## Tropical Cyclones



## Objectives

- From this lecture you should understand:
- Global tracks of TCs and the seasons when they are most common
- General circulation of the tropics and the force balances involved
- Conditions required for TC formation
- Properties of TC of different intensities and a general understanding of the Saffir-Simpson Scale
- TC Horizontal and Vertical structure
- How the Dvorak Technique is used to estimate TC intensity from satellites


## 2005 Hurricane Season Video

- http://www.youtube.com/watch?v=0woOxPYJ z1U\&feature=related
- Consider the following while watching video:
- General flow pattern of clouds and weather systems
- Origin/location of tropical storms in early season compared to later
- Where are the most intense hurricanes located?


## What is a Tropical Cyclone?



## Defining a Tropical Cyclone (TC)

- Warm-core, non-frontal, synoptic scale cyclone
- Originates over tropical or subtropical waters
- Maintains organized deep convection (banding features, central dense overcast)
- Closed surface wind circulation around welldefined center
- Maintained by barotropic energy...
- Heat extracted from ocean and exported to the upper troposphere
- ...Not by baroclinic energy
- Energy from horizontal temperature contrasts...frontal


## Tracks and Intensity of All Tropical Storms



Saffir-Simpson Hurricane Intensity Scale

## Tropical Cyclone Basins



- 86 globally on average with about a quarter becoming intense
- WPAC busiest, followed by EPAC, ATL, SWIO, AU, SPAC, NIO
A) JulySeptember

B) JaunaryMarch



## Global Circulation



Primary driving forces: Heat and Angular Momentum

## Tropics

Turns Westward

Hadley Cell

Turns Eastward

Necessary Conditions for TC Formation (Tropical Cyclogenesis)

1. Warm ocean surface (warmer than $26^{\circ} \mathrm{C}$ )
2. Weakly sheared troposphere ( $<15 \mathrm{~m} / \mathrm{s}$ or so)
3. Conditional instability
4. Pre-existing disturbance (enhanced vorticity)
5. Humid at 2-5 km (low/mid-level, around 700 mbar) altitude, at least 70-80\% RH
6. Usually more than $5^{\circ}$ latitude from the Equator (weak Coriolis force, less spin)

## 1. Ocean Temperature $>26^{\circ} \mathrm{C}$

## Top: March 1, 2010, Bottom: September 1, 2010




## 2. Weak Vertical Shear

- Definition of wind shear: vector difference between upper and lower level wind speeds
- High shear causes top and bottom of storm to move at different speeds, literally ripping the TC apart


Wind shear is usually defined as the difference between 850 and 200 mb wind vectors

## Shear $<15 \mathrm{~m} / \mathrm{s}$ is most favorable



## 3. Conditional Instability



## 3. Conditional Instability



## 4. Pre-Existing Disturbance

- Tropical Wave or Easterly Wave - moves off Africa into ATL and sometimes EPAC basins



## 4. Pre-Existing Disturbance

- Cutoff low at the tail of a trough can develop into a tropical or subtropical cyclone



## 5. Reasonably humid at $2-5 \mathrm{~km}$

- Problems with mid-level dry air:
- Dry air has less stored latent energy and is less buoyant
- Dry air near a thunderstorm causes some cloud droplets/rain to evaporate, which strengthens downdrafts and brings lower energy air to the surface



## 5. Mid-Level Humidity - Saharan Air Layer (SAL)



## 6. Tendency to Induce Spin

- It is easier for tropical cyclones to form further than 5 degrees away from the equator where the Coriolis force is not weak
- However TC can occasionally form closer to the equator given a strong westerly wind burst (the ITCZ / monsoon trough surface winds are moving east)
- Westerly wind burst can be caused by a Kelvin Wave


## 2001 Tropical Storm Vamei

- Developed at $1.4^{\circ} \mathrm{N}$ lat in South China Sea

| $4 / 2 / 26 / 01$ | 0600 Z | 91W INVEST |
| :--- | :--- | :--- |
| $12 / 26 / 01$ | 0424 Z | GMS - 5 VIS |

## TCHP: Tropical Cyclone Heat Potential

- Can be a factor in intensification
- In strong and slow-moving TCs, wave action often mixes cooler water from below up to the surface
- TCHP considers how deep the $26^{\circ} \mathrm{C}$ isotherm lies below the ocean surface, so a deep layer of warm water yields a higher TCHP



## Loop Current

Gulf of Mexico - Tropical cyclone heat potential (TCHP) 08/28/2005


## Color-Enhanced Water Vapor Imagery



## TC Lifecycle

- Tropical Disturbance
- Tropical Depression
- Tropical Storm
- Hurricane
- Major Hurricane (Cat 3-5)
- Extratropical Transition or Dissipation


## Tropical Disturbance

- Cluster of

Thunderstorms maintaining identity for >24 hours

- Poor organization
- Max sustained surface winds < 23 mph (20 kts)
- General area of low pressure, no surface circulation
- Classified numerically: "91L", "92L", etc.



## Tropical Depression

- Area of convection with cyclonic circulation around a low pressure center
- Max sustained surface winds 23-39 mph (20-34 kts)
- Classified in ascending numeric order by basin:
- "TD \#1", "TD \#2", etc.



## Tropical Storm

- Max sustained surface winds 40-74 mph (34-64 kts)
- Convection is concentrated near the center with outer rainfall organizing into distinct bands.
- Wide range of sizes, shapes, and intensities depending on environment
- Named: Arlene, Bret, Cindy, etc.



## Hurricane

- Max sustained surface winds > 74 mph (64 kts)
- Large area of convection on visible/IR satellite imagery, known as a Central Dense Overcast (CDO)
- Almost always has an eyewall or at least banded eyewall features visible on Radar/Microwave Satellite images



## Major Hurricane

- Max sustained surface winds > 111 mph (96 kts)
- Usually close to symmetric, with an eye, eyewall, and spiral bands
- Responsible for majority of deaths/damage



## Extratropical Transition

- Characterized by a loss of tropical characteristics (warm core) but not necessarily a large drop in intensity
- Occurs when a TC merges with a frontal system or mid-latitude trough
- Does not happen in all cases, sometimes a TC will simply move over land/cold water and dissipate



## Saffir-Simpson Scale

| Category | Wind (mph) | Pressure (mb) | Storm Surge (ft) |
| :---: | :---: | :---: | :---: |
| 1 | $74-95$ | $>980$ | $4-5$ |
| 2 | $96-110$ | $965-979$ | $6-8$ |
| 3 | $111-130$ | $945-964$ | $9-12$ |
| 4 | $131-155$ | $920-944$ | $13-18$ |
| 5 | $>155$ | $<920$ | $>18$ |

- Major hurricanes are Categories 3-5, responsible for $80 \%$ of damage in US
- Size/shape/location of Hurricane determines type and extent of damage
- Example: Compare damage of Katrina and Andrew


## Mature Tropical Cyclone Structure



## TC as a Carnot Engine



## Maximum Potential Intensity (MPI)

- Depends on two factors:

1. Sea surface temperature
2. Temperature at top of tropopause Maximum Wind Speed (m/s)


## Hurricanes rarely reach MPI because:

1. Environmental conditions are usually less than ideal (usually wind shear)
2. It can take up to a week or more for a disturbance to organize and strengthen
3. Upwelling of cooler ocean temperature from below the TC (especially if moving slowly)
4. Eyewall replacement cycles

- However, if a TC is well below MPI and has favorable environmental conditions, it may undergo rapid intensification.


## Vertical Structure

- Lower levels: cyclonic inflow, latent energy gained through exchange with sea
- Mid levels: strong vertical updrafts, condensation releases latent energy
- Upper Levels: anticyclonic outflow, some air sinks into eye and warms core (adiabatic warming), rest is expelled and slowly sinks away from storm


Figure 23.7 Trajectories of air parcels as they move through a numerically modeled hurricane. A full trajectory covers a period of eight days and each arrow head along a trajectory denotes a nine-hour interval. (From Anthes, R.A., Trout, J. W., and S. S. Ostlund. 1971. Three-dimensional particle trajectories in a model hurricane. Weatherwise 24: 176. Reprinted with permission of the Helen Dwight Reed Educational Foundation and Heldref Publications, 1319 18th Street, NW, Washington, DC 20036-1802.)

## Adiabatic Heating and Cooling



Tropopause



## Determining TC Intensity from

 Satellites1. Statistical Methods (Dvorak Technique)

- Use cloud pattern to estimate intensity based on consistent cloud patterns of TC

2. Satellite-Derived Wind Speeds (VIS and IR)

- Estimate wind speed from recent cloud movements

3. Passive Microwave Imagery (PMI)

- AMSU intensity estimates


## Dvorak Technique

- Estimates intensity (maximum surface wind) in terms of a numerical scale that ranges from T0 to T8 in steps of 0.5
- Originally used Visible imagery, then subsequently for IR-BD imagery
- Combines
- Model Estimated T-number (MET) based upon climatological rates of intensification
- Data T-number (DT) based upon recognition and analysis of "scene types" in the actual imagery
- Scene types:
- Curved Band Pattern
- Shear Pattern
- Central Dense Overcast (CDO) / Embedded Center Pattern
- Eye Pattern or Banding Eye Pattern


## FOUR PRIMARY PATTERNS AND TYPICAL T-NO.'s

$\stackrel{C}{ } \rightarrow$ CURVED BAND $\longrightarrow$




T \#

Dvorak T-Number and Corresponding Intensity ${ }^{[3]}$

| T-Number | Winds |  |  | Category <br> (SSHS) | Min. Pressure (millibars) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (knots) | (mph) | (km/h) |  | Atlantic | NW Pacific |
| 1.0-1.5 | 25 | 29 | 46 | TD | - | -- |
| 2.0 | 30 | 35 | 56 | TD | 1009 | 1000 |
| 2.5 | 35 | 40 | 65 | TS | 1005 | 997 |
| 3.0 | 45 | 52 | 83 | TS | 1000 | 991 |
| 3.5 | 55 | 63 | 102 | TS | 994 | 984 |
| 4.0 | 65 | 75 | 120 | Cat 1 | 987 | 976 |
| 4.5 | 77 | 89 | 143 | Cat 1-2 | 979 | 966 |
| 5.0 | 90 | 104 | 167 | Cat 2-3 | 970 | 954 |
| 5.5 | 102 | 117 | 189 | Cat 3 | 960 | 941 |
| 6.0 | 115 | 132 | 213 | Cat 4 | 948 | 927 |
| 6.5 | 127 | 146 | 235 | Cat 4 | 935 | 914 |
| 7.0 | 140 | 161 | 260 | Cat 5 | 921 | 898 |
| 7.5 | 155 | 178 | 287 | Cat 5 | 906 | 879 |
| 8.0 | 170 | 196 | 315 | Cat 5 | 890 | 858 |

Note: The pressures shown for the NW Pacific are lower as the pressure of that whole environment is lower as well.

## Shear Pattern

- The distance between the lowlevel center (LLC) and the CDO
- If the LLC and CDO are closely connected, the storm is stronger than if they are separated (tilted), or sheared apart



## BD Enhancement Curve

Segment Color Temperature
Number Range Range ( ${ }^{\circ} \mathrm{C}$ )
Name

| 2 | $\mathbf{0 - 2 5 5}$ | $>9.0$ | Warm Medium Gray |
| :---: | :---: | :---: | :---: |
| 3 | $\mathbf{1 0 9 - 2 0 2}$ | 9.0 to -30 | (WMG) |
| 4 | $60-60$ | -31 to -41 | Dark Gray (DW) |
| 5 | $110-110$ | -42 to -53 | Medium Gray (MG) |
| 6 | $160-160$ | -54 to -63 | Light Gray (LG) |
| 7 | $\mathbf{0 - 0}$ | -64 to -69 | Black (B) |
| 8 | $255-255$ | -70 to -75 | White (W) |
| 9 | $135-135$ | -76 to -80 | Cold Medium Gray |
| (CMG) |  |  |  |
| 10 | $85-85$ | $<-80$ | Cold Dark Gray (CDG) |

## Curved Band Pattern

- In this stage, the more completely the rainbands are wrapped around the system, the greater the TC vorticity and intensity.



## Dvorak Log10 Spiral Template



## Identifying Curvature of Spiral Band



## Measuring Curved Bands


0.8 Banding - DT=3.5

## CDO / Embedded Center Pattern



## Eye Pattern

- Identifies temperature contrast between the warm eye and cold surrounding convection.



## Step 2C - Eye Patterns

## Infrared Technique

Is the 24 hour old FT > 2.0? If not, go to step 2A or step 4.

| Surrounding <br> BD Color | CMG | W | B | LG | MG | DG | OW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Narrowest <br> width (deg) | $\geq 0.5$ | $\geq 0.5$ | $\geq 0.5$ | $\geq 0.4$ | $\geq 0.4$ | $\geq 0.3$ | $\geq 0.3$ |
| Eye Number <br> (E\#) | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.5 | 4.0 |

Eye
Adjustment:

|  | OW | Eye Temperature |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WMG | OW | DG | MG | LG | B | W |
|  |  | 0 | -0.5 |  |  |  |  |  |
| ¢ | DG | 0 | 0 | -0.5 |  |  |  |  |
| $\bigcirc$ | MG | 0 | 0 | -0.5 | -0.5 |  |  |  |
| 0 | LG | +0.5 | 0 | 0 | -0.5 | -0.5 |  |  |
| $\bigcirc$ | B | +1.0 | +0.5 | 0 | 0 | -0.5 | -0.5 |  |
| ¢ | W | +1.0 | +0.5 | +0.5 | 0 | 0 | -1.0 | -1.0 |
| $\cdots$ | CMG | +1.0 | +0.5 | +0.5 | 0 | 0 | -0.5 | -1.0 |

## Satellite-Derived Winds

- Works best in moderate-wind and lowprecipitation environments
- Not as reliable under deep convection
- Useful to determine wind speed radii, which is important for shipping interests, storm surge forecasts, and numerical modeling
- Wind satellites are often polar-orbiters, so realtime data is infrequent
- GOES satellites can also be used by monitoring cloud movement patterns



## PMI - AMSU Intensity Estimates


wp112013 08/12/13 16UTC


## Review Questions

1. Name one of the necessary conditions for Tropical Cyclone formation.
2. A Hurricane's Maximum Potential Intensity (MPI) depends on what two factors?
3. Name one of the 4 scene types used in the Dvorak Technique to classify TC intensity.
