


1. Where does a hurricane come from?
2. How can a hurricane maintain Its strength?

3. What determines the movement of a hurricane?

4. Why sometimes we cannot accurately predict
the track of a hurricane?

5. Why it is difficult to provide accurate hurricane
Intensity forecast?

6. How can we improve hurricane forecast?



1. Where does a hurricane come from?
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What fundamentally drives air motion?
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2. How can a hurricane maintain its strength?
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Itis the convective clouds that generate spin up process to overcome
the spin down process induced by the Ekman pumping




Where do energy and moisture come from to foster
a large amount of convection in a hurricane?




3. What determines the movement of a hurricane?

The Bermuda High: Navigator of hurricanes

A weak Bermuda High allows

The location and strength of the Bermuda High, a ridge of high pressure, isa hurricanes to move narth along
major factor in determining whether South Florida is besieged with hurricanes. the East Coast and out to sea.

The High is now
centered in the
Atlantic Ocean.

Gulfof
Mexico

Atlantic
Ccean

NOTE: Oeheratmaspheric canditicns
If the Bermuda High strengthens, *, ...intothe Bahamas play 2 rele in where hurricanes ravel 1

hurricanes can be steered into the Guifor ... - and Florida.
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Issues with numerical forecasts

Newton’s law of motion governs hurricane movement.
av _

dt F

Vt+dt_Vt

At

Initial value problem

British scientist L. F. Richardson = American meteorologist J. G. Charney
Weather Prediction by Quasi-geostrophic model, 1950
Numerical Process, 1922




What is the problem?

Pressure gradient force, P~ g Gravity force, g

dw _p _
gt — "9

Acoustic waves need to be removed from numerical model
In the 50s, people are optimistic about numerical weather forecast due to:

Global observational network of the atmosphere has been established,
which can provide more accurate initial fields.

Great success of numerical calculation in other fields, such as
calculating the trajectories of planetary orbits and long-range missals.

The accuracy of numerical forecast improved dramatically
during the 60s, 70s, and 80s.

But unfortunately, improvement slowed nearly to a
standstill beginning around 90s.



5. Why it is difficult to provide accurate hurricane intensity forecast?

Chaotic nature of the atmosphere
Insufficient observations

Inherent deficiency of numerical models

How to generate initial conditions for numerical simulations?

First guess of the current state of the
atmosphere (previous 12-hour forecast of
current conditions)

Data

assimilation - -
(blending in — Initial Condition

o:1)
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a. Boundary layer heat, moisture, and momentum
transport by turbulence

b. Cloud convection and cloud microphysics

c. Radiation



clouds turbulence
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transport of heat, moisture, momentum

=f(U,V,W,T,Q)
Parameterization

Hurricane Boundary Layer (HBL)

Currently almost no exception, the boundary layer parameterizations
developed in non-hurricane conditions are also used without any
modification in the simulation and prediction of hurricanes to
account for the turbulent transport in the hurricane boundary layer.

But hurricane boundary layer has its own
unique characteristics.
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1. To what extent can convection modlfy the hurricane boundary

layer structure and turbulent processes?
2. How does the interaction between convection and boundary layer

turbulent processes affect the vertical transport?
3. Whether the existing turbulent mixing scheme and convection
scheme can realistically represent this interaction?



Hurricane boundary layer roll vortices
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\orticity front from the simulation of Hurricane Katrina

Largést vorticity > 0.1 s, which is
- greater than the vertical vorticity
usually observed in weak tornadoes.
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Eyewall Mesovortices

Hurricane Isabel Hurricane Alberto

Observations show that the hurricane intensification seems to be
always accompanied by the occurrence of eyewall meso-vortices.



6. How to improve hurricane forecasting?

Ensemble forecasting
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Study sub-grid processes and improve parameterizations

Large eddy simulation (LES)
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Multiple-scale large-eddy simulation
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Simulated hurricane boundary layer roll vortices

10-m winds (m s™') and vertical velocities (m s') at 500 m
(1) 2004-09-16, 06:40 UTC (2) 2004-09-16, 06:41 UTC
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IHRC Tower Observations

(a) Observed and simulated 10-m total wind speed (m 5'1)
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Summary

Causes for numerical forecast errors:

Insufficient observations;

Chaotic nature of the atmosphere;

Inherent deficiency of numerical models with
limited resolution that fails to resolve sub-grid
physical processes.

Our answers to reduce forecast errors:

Data assimilation:
Ensemble forecast;
Parameterization.



