
Estimation of Tropical Cyclone Intensity in the North Atlantic and Northeastern Pacific
Basins Using TRMM Satellite Passive Microwave Observations

HAIYAN JIANG

Department of Earth and Environment, Florida International University, Miami, Florida

CHENG TAO

Department of Earth and Environment, Florida International University, Miami, Florida, and Lawrence Livermore

National Laboratory, Livermore, California

YONGXIAN PEI

Department of Earth and Environment, Florida International University, Miami, Florida

(Manuscript received 8 April 2018, in final form 2 November 2018)

ABSTRACT

A statistical passive microwave intensity estimation (PMW-IE) algorithm for estimating the intensity of

tropical cyclones (TCs) in the North Atlantic and northeastern and central Pacific basins is developed and

tested. The algorithm is derived from Tropical Rainfall Measuring Mission (TRMM) Microwave Imager

(TMI) 85-GHz brightness temperatures and near-surface rain-rate retrievals to provide objective estimates of

current maximum sustained surface winds (Vmax) and 6-h future Vmax of TCs. The full record of TRMM

data (1998–2013) including 2326 TMI overpasses of 503 TCs is separated into dependent samples (1998–2010)

for model development and independent samples (2011–13) for model verification. The best track intensities

are used as dependent variables in a stepwise multiple-regression approach. Separately for each basin, three

regression models are derived using selected 1) 85-GHz-only variables, 2) rain-rate-only variables, and 3)

combined 85-GHz and rain variables. The algorithms are evaluated using independent samples and thosewith

contemporaneous aircraft-reconnaissance measurements. Rain-only and combined models perform better

than the 85-GHz-only model. Lower errors are found for estimating the 6-h future Vmax than estimating the

current Vmax using all three models. This suggests that it is optimal to use passive-microwave-retrieved rain

variables observed a few hours earlier to estimate TC intensity. The MAE (RMSE) of 6-h future Vmax is

9 (12) kt (1 kt ’ 0.51m s21) when testing the combined models with ATL and EPA independent samples.

Aircraft-reconnaissance-based independent samples yields a MAE of 9.6 kt and RMSE of 12.6 kt for esti-

mating 6-h future Vmax.

1. Introduction

Wind damages caused by tropical cyclones (TCs) are

closely related to their size, wind structure, and maxi-

mum sustained wind speed intensity. To make accurate

TC intensity forecasts, the first step is to accurately es-

timate the current intensity of TCs. It remains a great

challenge to develop and improve objective techniques

to estimate a TC’s intensity. Since it was developed over

three decades ago, the satellite-based Dvorak technique

(DT) has been an important operational tool to estimate

TC intensity (Dvorak 1972, 1984; Velden et al. 1998).

This technique was based on an algorithm applied to

both geostationary visible and infrared (IR) satellite

images. The original algorithm is subjective and de-

pendent on interpretations of TC attributes by different

analysts, and therefore can result in different intensity

estimates of the same storm. The automatic version of

the algorithm—the objective Dvorak technique (ODT)

developed by Velden et al. (1998)—can overcome the

subjective problem, but is not applicable to tropical

depressions or weak tropical storms. As presented in

Olander and Velden (2007), the advanced Dvorak

technique (ADT) is the most recent version of ODT. It

provided many improvements and advancements over

the ODT and can make intensity estimates for all TCsCorresponding author: Dr. Haiyan Jiang, haiyan.jiang@fiu.edu
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including weak storms. The latest upgrades and en-

hancements of ADT were presented in Olander and

Velden (2018).

Other approaches using IR satellite imagery to auto-

matically estimate TC intensity have emerged. A multi-

variate regression algorithm introduced by Kossin et al.

(2007)was for historical TC intensity reanalysis using best

track intensity within 3h of aircraft-reconnaissance data.

The deviation angle variance (DAV) technique was

originally developed by Piñeros et al. (2008, 2011). It

calculates the gradient of the IR brightness temperature

field to correlate with TC intensity. Amodified version of

DAVwas presented in Ritchie et al. (2012, 2014) for TCs

in the North Atlantic and North Pacific Ocean basins,

respectively. A ‘‘feature analogs in satellite imagery

(FASI)’’ technique was introduced by Fetanat et al.

(2013), which was developed from historical hurricane

IR satellite data using a k-nearest-neighbor algorithm.

The technique was trained and validated using aircraft-

reconnaissance-based best track data. More recently,

Pradhan et al. (2018) presented a convolutional neural

network (CNN)-based TC intensity estimation technique

from IR satellite imagery. It was tested using an aircraft-

reconnaissance-based best track dataset as well. Unlike

the subjective DT and objective ADT, all of the above-

mentioned IR satellite-based algorithmswere reported in

development stage and were not implemented for real-

time usage.

Themaximumwind of hurricanes usually occurs within

the eyewall region. The visible and IR images only show

the cloud-top structure of a TC and cannot measure the

detailed structure at lower levels, especially in the eyewall

(Kidder and Vonder Haar 1995). The advantage of pas-

sive microwave channels is that they allow penetration

into precipitating clouds, which is a very favorable feature

especially when a central dense overcast exists in visible

and IR images. Satellite passivemicrowave sounders such

as theAdvancedMicrowave SoundingUnit (AMSU) can

measure the warm-core anomaly, which has been used to

estimate TC intensities (Kidder et al. 2000). There are

two AMSU-based TC intensity estimation algorithms

available in real time or near–real time. Both of them

use a multilinear regression approach. The University of

Wisconsin–Madison Cooperative Institute for Meteoro-

logical Satellite Studies (CIMSS) AMSU-based algo-

rithm was first documented in Brueske and Velden

(2003), and updated in later and recent conference pre-

sentations (Herndon and Velden 2006; Herndon et al.

2018). The Colorado State University Cooperative In-

stitute for Research in the Atmosphere (CIRA) AMSU-

based algorithm was first documented in Demuth et al.

(2004, 2006), and updated in a recent conference pre-

sentation (Chirokova et al. 2018). The recent updates of

both CIMSS and CIRA AMSU-based algorithms in-

cluded data input from other sounders, such as the

sounding channels of Special SensorMicrowave Imager/

Sounder (SSMIS), Advanced Technology Microwave

Sounder (ATMS), and the future Time-Resolved Ob-

servation of Precipitation structure and storm intensity

with a Constellation of Smallsats (TROPICS). Real-

time implement efforts are reported by CIMSS and

CIRA for the AMSU-based algorithms in conference

presentations (Herndon and Velden 2006; Herndon et al.

2018; Chirokova et al. 2018), but no refereed documents

are available at the time of this writing.

Passive microwave imagers measure upwelling ra-

diances at frequencies near 6, 10, 19, 22, 37, and

85–91GHz. Radiances at these channels are influenced

strongly by emission from liquid water drops and/or

water vapor, and/or by the scattering of radiation by ice

particles. These characteristics make the microwave

sensors well suited to the estimation of rain. With or

without formally retrieving rain rates, these channels are

useful for assessing the distribution of rain in a TC.

Observations in these channels are suggestive of the

upward motion and latent heating that are critical for

driving a TC’s circulation. Therefore, these channels

offer unique perspectives to estimating TC intensities.

Previous studies have demonstrated that the storm in-

tensity is very well correlated with variables associated

with 85-GHz brightness temperatures and rain rates in the

inner core. The 85-GHz microwave channel is sensitive to

ice particles in precipitation systems. These precipitation-

sized particles scatter the upwelling radiation and reduce

the brightness temperature. Therefore, a low 85-GHz

brightness temperature can therefore imply increased

precipitation rate and convective intensity. Glass and

Felde (1992) examined the relationship between the

85-GHz brightness temperature and TC intensity. They

found that the percentage of pixels having brightness

temperatures below 220–230K is highly correlated with

TC intensity. Rao and MacArthur (1994) found that the

microwave-derived rainfall rates in the inner-core re-

gion were highly correlated with 24-h future typhoon

intensity (correlation coefficient5 0.68). Similar results

were found by Rodgers et al. (1994) using the western

North Atlantic TCs. Cecil and Zipser (1999) examined

various ice-scattering signature parameters from the

85-GHz observations. They found high correlations (0.5–

0.8) between the mean 85-GHz polarization-corrected

brightness temperature (PCT; Spencer et al. 1989) in the

inner core and the current and 24-h future TC intensity.

These previous studies have provided the proof of

concept of using microwave brightness temperatures

and retrieved rain rates to estimate TC intensity. Bankert

and Tag (2002) made a step forward by developing an
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automatic TC intensity estimation technique using both

the 85-GHz and derived rain-rate imagery. The technique

was based on feature selection using a k-nearest-neighbor

algorithm. It was updated in a recent conference pre-

sentation (Bankert and Cossuth 2016) by adding 37-GHz

features as input. The detailed error statistics of all

abovementioned IR-, AMSU-, and SSM/I-based algo-

rithms from peer-reviewed sources will be summarized in

section 5 (Table 9).

All of these passive-microwave-imager-based studies

used the lower-resolution SSM/I data. The coarse reso-

lution of the SSM/I can reduce the heavy rain rates that

can be observed otherwise. There are higher-resolution

passive microwave imager data available from the Ad-

vanced Microwave Scanning Radiometer (AMSR, in-

cluding AMSR-E, then AMSR-2), Tropical Rainfall

MeasuringMission (TRMM)Microwave Imager (TMI),

and the recent Global Precipitation Mission (GPM)

Microwave Imager (GMI). Table 1 shows a comparison

of the spatial resolutions at 85–91GHz of these sen-

sors. In the current study, variables from the 85-GHz

channel and derived rain rate from the higher-

resolution TMI observations are used to develop a

statistical technique called Passive Microwave Intensity

Estimation (PMW-IE) algorithm for estimating the

intensity of TCs in the North Atlantic (ATL) and

northeast and central Pacific (EPA) basins, respectively.

The data and methodology are described in section 2.

In section 3, the selection of independent variables and

the regression analysis are discussed. Evaluations of

the model performance using independent samples are

discussed in section 4, followed by a discussion of the

results as compared with other TC intensity estimation

algorithms in section 5. Conclusions and future work are

presented in section 6.

2. Data and methodology

The data used in this study include observations from

TRMM. One of the main goals of the TRMM project is

to monitor TCs globally (Simpson et al. 1988). The

TRMM satellite was launched in November of 1997 and

ended operation in 2014. This platform provides cover-

age of latitudes from 368S to 368N. The TMI on TRMM

is a conically scanning 9-channel microwave radiometer

that provides brightness temperatures in these channels.

The instrument operates at 10.65-, 19.35-, 21.3-, 37.0-,

and 85.5-GHz frequencies. To reduce the ambiguity

between low brightness temperatures due to ice scat-

tering and low brightness temperatures due to radio-

metrically cold sea surface, Spencer et al. (1989) derived

the 85-GHz-channel PCT:

PCT
85
5 1. 82T

85v
2 0. 82T

85h
, (1)

where v and h subscripts are for vertical and horizontal

polarizations, respectively. The 2A12 surface rainfall

product uses the full spectrum of TMI frequencies to

make rain estimates. The product is based on the NASA

GPROF algorithm (Kummerow et al. 1996). Version 7

of the TMI 2A12 product is used in this study.

In this study, a TMI dataset from the full TRMM re-

cord (1998–2013) for the ATL and EPA TCs is used. It

includes all named storms with intensity ranging from

tropical depression to category 1–5 hurricane stages. To

select TC overpasses from TRMM observations, the

TRMMTropical Cyclone Precipitation Feature (TCPF)

database (http://tcpf.fiu.edu; Jiang et al. 2011) is used.

This database currently includes global TCs that were

observed by the TRMM satellite during 1998–2013. In

the database, the TC positions and maximum sustained

wind (Vmax) intensity on the satellite overpass time

were linearly interpolated from the best track data. The

best track data for the ATL and EPA basins are from

HURDAT2 (Landsea and Franklin 2013).

The TMI’s swath width is 878 km (760km before the

TRMM orbital boost in August 2001). Because of the

limitation of the swath width, not all TCs were well

observed by the TMI. To be included in the dataset of

this study, an overpass must capture a 250-km radius

from the TC center. At the TMI observation time, the

storm must be over water, and will be over water in the

following 6 h. The algorithm is developed for ATL and

EPA samples separately. The final dataset includes 1219

TABLE 1. Spatial resolution at 85–91GHz, other frequencies, and operating years of satellite passive microwave radiometers mentioned

in section 2a.

Sensor Frequency (GHz) Spatial resolution (km2) Other frequencies (GHz) Years

SSM/I (F15) 85.5 15 3 13 19, 22, 37 1987–present

SSMIS (F16, 17, 18, 19) 91 14 3 13 19, 22, 36.5, 50, 60, 183 2003–present

AMSR-E 89 6 3 4 6, 10, 18, 23, 36.5 2002–11

AMSR2 89 5 3 3 6, 10, 18, 23, 36.5 2012–present

TMI 85.5 7 3 5 (before boost),

8 3 6 (after boost)

10, 19, 22, 37 1997–2014

GMI 89 7.2 3 4.4 10, 18, 23, 36.5, 165, 183 2014–present
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TMI overpasses of 239 TCs in ATL and 1107 overpasses

of 264 TCs in EPA. It is further separated into de-

pendent and independent samples as shown in Table 2.

The dependent sample will be used for model develop-

ment, while the independent sample will be for verifi-

cation. As seen in Table 2, the dependent sample of

ATL (EPA) includes 962 (870) overpasses of 191 (213)

TCs during 1998–2010, while independent sample of

ATL (EPA) includes 257 (237) overpasses of 48 (51)

TCs during 2011–13. Table 2 also presents the distribu-

tion of samples for different TC intensity categories.

To develop the model, first, the dependent samples are

used to calculate the correlation coefficients between

TMI-derived variables and best track current and 6-h

future intensities and the correlation coefficient matrix

among TMI-derived variables. A group of variables are

selected based on the correlation coefficients and signif-

icance test results. Stepwise multiple linear regressions

are then performed using variables derived from the de-

pendent sample to generate a method for estimating the

current TC intensity and 6-h future TC intensity. Last, the

independent sample is used to evaluate the performance

of the newly developedmethod. The error statistics of the

model is generated by comparing the best track current

and 6-h future intensities with the estimated values.

3. Selection of variables and regression analysis

a. Selection of variables

To develop the TC intensity estimation model, our

first step is to select passive microwave variables that are

well correlated with TC intensity Vmax. According to

Cecil and Zipser (1999) and other previous studies

mentioned in the introduction section, both 85-GHz

PCT and rain-rate-related parameters in the inner core

are considered. We have tested a large number of vari-

ables including the mean, median, standard deviation,

and maximum/minimum of 85-GHz PCT and rain rate

in the inner core and the fractional inner-core area

covered by 85-GHz PCT less than a certain value or rain

rate greater than a certain value. Although the storm

inner-core size is generally defined as within ;100km

from the TC center (Rodgers and Pierce 1995; Cecil and

Zipser 1999), it actually varies from storm to storm

(Jiang et al. 2013). We have tested eight choices of the

inner-core radius including 75, 100, 125, 150, 175, 200,

225, and 250 km to calculate above 85-GHz PCT and

rain-rate-related variables. The linear correlation co-

efficients between these variables and Vmax and the

corresponding p values from Student’s t tests are cal-

culated. Table 3 lists the variables with correlation co-

efficients significant at the 99.99% level for all eight

different radii of inner core. Only these variables will be

used as candidate estimators of TC intensity.

However, it is necessary to choose an optimal radius of

the inner core for calculating these variables. Figure 1

plots the correlation coefficients between the 12 variables

andVmax and 6-h futureVmax as a function of inner-core

radius choices for ATL and EPA samples, respectively.

The correlation coefficients are not very sensitive to the

inner-core radius choices. But we found that when using

100 (75)km as the inner-core radius for ATL (EPA)

samples, the highestmultiple linear correlation coefficients

are achieved. Among all the variables, the inner-core

fractional area covered by heavy rain (H_RA) and un-

conditional mean rain rate in the inner (U_RR) have the

highest correlation coefficients with Vmax and 6-h fu-

ture Vmax. In this study, unconditional mean rain rate is

defined as the average of all rain-rate values including

zero within the inner-core region, whereas the condi-

tional mean rain rate is defined as the average of all

nonzero rain-rate values within the inner core. Corre-

lation coefficients of these two variables with Vmax and

6-h future Vmax are the highest at 100-km inner-core

radius for ATL samples and at 75-km radius for EPA

samples. Therefore, we will use 100 km (75km) as the

inner-core radius for ATL (EPA) samples for calculat-

ing the variables listed in Table 2 for the model devel-

opment verification in the following sections.

Although this study is mainly for algorithm develop-

ment and testing using a homogeneous historical dataset

and not for real-time usage yet, we should always keep

TABLE 2. Numbers of TMI samples and numbers of TCs (in parentheses) for both the dependent (1998–2010) and independent (2011–13)

datasets in different TC intensity categories according to Saffir–Simpson category for the ATL and EPA basins.

ATL EPA

Dependent

(1998–2010)

Independent

(2011–13)

Dependent

(1998–2010)

Independent

(2011–13)

Tropical depression (TD; ,34 kt) 254 (118) 48 (25) 398 (159) 110 (42)

Tropical storm (TS; 34–63 kt) 398 (144) 157 (39) 299 (152) 85 (43)

Category 1–2 hurricanes (64–95 kt) 201 (67) 45 (16) 98 (54) 27 (18)

Category 3–5 hurricanes (.96 kt) 93 (33) 4 (2) 63 (31) 12 (7)

All TCs 962 (191) 257 (48) 870 (213) 237 (51)
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real-time application in mind. In real time, a satellite

data latency of 2–4 h is always possible and a real con-

cern. Our approach is to evaluate the correlations of the

TMI-derived variables with the 6-h future Vmax as well.

If high correlations also exist as we expected, we could

still use the late information to estimate the current in-

tensity (at ;6-h future synoptic time relative to the

satellite observation time).

Table 4 provides the linear correlation coefficients

between the 12 variables listed in Table 2 calculated at

the optimal inner-core radius and TC current (t 5 0 h)

and 6-h future (t 5 6 h) Vmax for ATL and EPA de-

pendent samples. Since the 85-GHz brightness temper-

atures and rain retrievals are from different products, we

treat 85-GHz and rain variables separately in order to

isolate their individual contributions to TC intensity

estimates. In Table 4, the multiple linear correlation

coefficients for the five 85-GHz variables, seven rain

variables, and twelve combined 85-GHz and rain vari-

ables are also provided, respectively. It is seen from

Table 4 that rain variables are better correlated with

Vmax and 6-h future Vmax than 85-GHz variables. The

multiple linear correlation coefficients with Vmax are

0.74 (0.69) for 85-GHz variables and 0.86 (0.80) for rain

variables for ATL (EPA) samples. After combining

all 12 rain and 85-GHz variables, the coefficients with

Vmax are the same as the rain variables. These cor-

relations coefficients are higher than those found in

Cecil and Zipser (1999) using 85-GHz-only parameters.

Slightly better correlations are seen between these

satellite-derived variables and 6-h future Vmax. This jus-

tifies the usefulness of microwave data even with 2–4-h

latency in real time.

b. Regression model

Based on the results above, the PMW-IE model is

developed to provide TC intensity estimation. The ap-

proach is similar to the Statistical Hurricane Intensity

Prediction Scheme (SHIPS; DeMaria and Kaplan 1994),

in which a multiple linear regressionmethod was used to

predict TC future intensity change from a set of clima-

tology and persistence, and environmental parameters.

A similar approach was also used in the CIRA AMSU-

based intensity estimates (Demuth et al. 2004, 2006).

In this study, three regression models will be made for

each basin using 85-GHz-only, rain-only, and combined

85-GHz and rain variables. As stated in Franke (2010),

multicollinearity is a problem and should be avoided

for multilinear regressions. Predictor variables that

are highly correlated could cause overfitting problems.

Therefore, for each regression model, a correlation co-

efficient matrix among all the candidate variables is

calculated and reviewed to eliminate variables that

are highly correlated with each other (correlation co-

efficient above 0.8). For the remaining variables, step-

wise regressions using the International Mathematics

and Statistics Library (IMSL) software are performed to

further filter out variables with little contributions to the

model. Table 5 shows the final regression variables used

in each model and their corresponding normalized co-

efficients. A ‘‘—’’ symbol without a number valuemeans

that this variable is not used in the correspondingmodel.

For example, only the inner-core fractional area covered

by 85-GHz PCT # 275K (FRAC275), 85-GHz PCT #

225K (FRAC225), and 85-GHzPCT# 200K (FRAC200)

are used in 85-GHz-only regression models in both ba-

sins. But note that their regression coefficients are dif-

ferent for ATL versus EPA and for estimating Vmax

versus 6-h future Vmax.

Table 5 shows that FRAC275 is the most influential

parameter when using 85-GHz-only regression equa-

tions in estimating both Vmax and 6-h future Vmax in

the ATL basin. But for the EPA basin, FRAC225 is

more influential than FRAC275 for estimating Vmax.

For rain-only and combined 85-GHz and rain regression

models, the single most influential parameter is H_RA,

whose normalized coefficients are much higher than

those of other variables remained in the models. In

the regressions using combined 85-GHz and rain esti-

mators, the rain estimators influence muchmore than the

85-GHz estimators. This is expected because the inner-core

rain is better correlated with TC intensity. The 85-GHz

estimators explain 53% (47%) of the variance in Vmax

TABLE 3. List of 85-GHz and rain variables in the inner core de-

rived from passive microwave observations.

Variables Description Unit

85GHz

MEANPCT Mean 85-GHz PCT K

FRAC275 Fractional area covered by

85-GHz PCT # 275K

%

FRAC250 Fractional area covered by

85-GHz PCT # 250K

%

FRAC225 Fractional area covered by

85-GHz PCT # 225K

%

FRAC200 Fractional area covered by

85-GHz PCT # 200K

%

Rain

U_RR Unconditional mean rain rate mmh21

C_RR Conditional mean rain rate mmh21

L_RR Mean light rain (rain rate

between 0 and 5mmh21) rate

mmh21

H_RR Mean heavy rain (rain rate

$ 5mmh21) rate

mmh21

RA Fractional area covered by rain %

L_RA Fractional area covered by light rain %

H_RA Fractional area covered by heavy rain %
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and 59% (54%) in 6-h future Vmax for ATL (EPA)

samples. The rain estimators explain a higher percent-

age of the variance in Vmax and 6-h future Vmax (be-

tween 75% and 77% for ATL and between 65% and

69% for EPA) than the 85-GHz estimators. After

combining 85-GHz and rain estimators, a similar or slightly

higher percentage is achieved. Regression models for

ATL explain higher percentages of the variance than

their corresponding models for EPA. This suggests that

it is beneficial to separate different basins when de-

veloping the algorithm. Regression models for estimat-

ing 6-h future Vmax explain higher percentages of the

variance than their corresponding models for estimating

Vmax. This not only suggests that the satellite data la-

tency can be resolved this way, but it also indicates that a

higher accuracy might be achieved by using the 6-h fu-

ture Vmax estimation models.

4. Independent verification

To evaluate the PMW-IE algorithm developed above,

independent datasets for ATL and EPA basins are ap-

plied to each regression model accordingly. The results

are compared with the best track. As shown in Table 6,

for the 257 ATL independent samples, the 85-GHz-only

model explains 37% of the Vmax variance and 44% of

the 6-h future Vmax variance. The rain-only model ex-

plains 54% of the Vmax variance and 58% of the 6-h

future Vmax variance. The combined algorithm ex-

plains very similar percentages of Vmax and 6-h future

FIG. 1. Correlation coefficients between the 12 variables listed in Table 2 and the best track Vmax as a function of

inner-core radius for (a) ATL and (b) EPA dependent samples. (c), (d) As in (a) and (b), respectively, but for

correlation coefficients between the 12 variables listed in Table 2 and the best track 6-h future Vmax.
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Vmax variances to the rain-only model. The mean abso-

lute error (MAE) of Vmax is 11.47kt (1kt ’ 0.51ms21)

using the 85-GHz-only algorithm and decreases to 9.77

and 9.74 kt when using rain-only and combined algo-

rithms, respectively. The root-mean-square error (RMSE)

of Vmax is 15.31kt using the 85-GHz-only algorithm.

Using the rain estimators substantially reduce the RMSE

of Vmax to 12.83 (12.84)kt by the rain-only (combined)

algorithm. The standard deviation of residuals (STD) of

Vmax is 15.24kt for the 85-GHz-only algorithm, and de-

creases to 12.81 (12.83)kt for the rain-only (combined)

algorithm. MAEs, RMSEs, and STDs of 6-h future Vmax

are all smaller than their corresponding values ofVmax for

all three regression models.

For the 237 EPA independent samples, all three

models explain higher percentages of variance of Vmax

and 6-h future Vmax than their corresponding values for

the ATL samples, ranging from 41% to 71%. Similar

improvements as for ATL samples are seen for the rain-

only or combined model versus the 85-GHz-only model.

MAE, RMSE and STD of Vmax and 6-h future Vmax

using the 85-GHz-only model are higher for EPA sam-

ples than those for ATL samples. When using rain-only

and combined models, MAEs, RMSEs, and STDs of

Vmax are higher for EPA samples, but those of 6-h future

Vmax are lower than those for ATL samples.

Thebest track intensity estimates aremost accuratewhen

there were contemporaneous aircraft reconnaissance

TABLE 4. Linear correlation coefficients R between satellite-derived variables and TC current (t5 0 h) and 6-h future (t5 6 h) Vmax.

Multiple linear correlation coefficients using five 85-GHz variables, seven rain variables, and combined 85-GHz and rain variables are also

presented. All the coefficients are significant at the 99.99% level based on Student’s t tests.

Variables

ATL cases (n 5 962) EPA cases (n 5 870)

t 5 0 h t 5 6 h t 5 0 h t 5 6 h

MeanPCT 20.69 20.73 20.66 20.71

Frac275 0.70 0.75 0.64 0.70

FRAC250 0.69 0.73 0.65 0.70

FRAC225 0.50 0.53 0.57 0.60

FRAC200 0.21 0.23 0.32 0.36

All 85-GHz variables 0.74 0.78 0.69 0.74

U_RR 0.84 0.84 0.80 0.82

C_RR 0.79 0.80 0.78 0.80

L_RR 0.72 0.74 0.70 0.73

H_RR 0.59 0.61 0.62 0.64

RA 0.69 0.72 0.62 0.66

L_RA 0.13 0.16 0.20 0.23

H_RA 0.86 0.87 0.80 0.83

All rain variables 0.86 0.87 0.80 0.83

Combined 85-GHz and rain variables 0.86 0.87 0.80 0.83

TABLE 5. Regression variables and their corresponding normalized coefficients to estimate best track Vmax and 6-h future Vmax for

the 85-GHz-only, rain-only, and combined 85-GHz and rain models in ATL and EPA, respectively. In the bottom rowR2 is the portion of

total variance explained by each regression.

ATL EPA

85-GHz only Rain only Combined 85-GHz only Rain only Combined

t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h

MEANPCT — — — — — — — — — — — —

FRAC275 16.06 17.38 — — — — 11.51 13.24 — — — —

FRAC250 — — — — — — — — — — — —

FRAC225 10.04 9.56 — — 23.26 — 12.80 12.40 — — 21.40 —

FRAC200 28.80 28.26 — — — 21.81 27.63 27.22 — — — —

U_RR — — — — — — — — — — — —

C_RR — — — — — — — — — — — —

L_RR — — — — — — — — — — — —

H_RR — — — — 1.69 1.48 — — 2.36 1.79 2.78 1.79

RA — — 3.36 4.66 3.04 4.46 — — — 1.51 — 1.51

L_RA — — — — — — — — — — — —

H_RA — — 20.98 20.30 22.20 20.01 — — 19.23 19.46 19.93 19.46

R2 0.53 0.59 0.75 0.77 0.76 0.77 0.47 0.54 0.65 0.69 0.65 0.69
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available. In this study, the aircraft-reconnaissance-based

best track (AIRC) samples are identified if a sample was

within 3h of an aircraft reconnaissance. There are 38AIRC

samples out of the 257ATL independent samples, but only

five AIRC samples out of the 237 EPA independent

samples. As seen in Table 7, the MAEs, RMSEs, and

STDs from the ATL AIRC samples are very similar to

those from all ATL independent samples in Table 6. For

the EPA AIRC samples, much smaller MAEs, RMSEs,

and STDs are found (around 5–7 kt, not shown). But

since there are only five AIRC samples in EPA, the

result might not be representative.

The scatterplots of best track Vmax and 6-h future

Vmax versus the PMW-IE estimated Vmax and 6-h fu-

ture Vmax for independent samples in ATL and EPA

are shown in Figs. 2 and 3, respectively. The data points

are generally clustered around the 1:1 line, with no sig-

nificant biases found for all samples (Table 8). However,

there are some outliers, especially for the 85-GHz-only

model. There are less outliers for both rain-only and

combined models. As seen in Table 8, all the regression

models have a tendency to underestimate higher in-

tensities and overestimate weaker intensities, but the

biases are the largest for the 85-GHz-only model. Sim-

ilar biases are seen between the rain-only and combined

models. For example, the positive bias (overestimation)

for tropical depressions in ATL decreases from 17.11 kt

of the 85-GHz-only model to 9.46 of the rain-only model

and 9.17 kt of the combined model. Much smaller biases

are found for 6-h future Vmax estimations than those

for Vmax for each corresponding model and basin.

The largest biases are found for hurricanes in EPA,

ranging between 213.59 and 221.79 kt. All hurricanes

are grouped together in Table 8’s bias analysis because

there are not enough samples in the major-hurricane

category in the independent sample (Table 2) to

warrant a separate error analysis.

5. Comparison with other TC intensity
estimation techniques

This section provides a general comparison of error

statistics with other existing algorithms estimating TC in-

tensity. Ideally, a homogeneous comparison using a ho-

mogeneous dataset is preferred. However, that will cause

toomuch effort and is beyond the scope of this study.Here

only a general comparison is provided in Table 9 to show

MAEs and/or RMSEs of other techniques as published in

refereed publications. Note that updates on the perfor-

mance of some algorithms presented in nonrefereed

sources are not included inTable 9. Since each technique is

developed using very different training and validation da-

tasets, one can only drawbroad conclusions onwhether the

PMW-IE algorithm can make new contributions to the

existing analysis of TC intensity. Based on results in section

4, both of the rain-only model and the combined model

performed much better than the 85-GHz-only model.

They also performedbetter for estimating 6-h futureVmax

than current Vmax. Therefore, the MAE and RMSE of

the combined model for estimating 6-h future Vmax are

listed in Table 9 to be compared with other techniques.

There are four IR-based objective techniques listed

in Table 9 that have been verified against aircraft-

reconnaissance-based samples. Using 2039 best track

samples within 1h of aircraft-reconnaissance measure-

ments from 1996 to 2005, Olander and Velden (2007)

presented the error statistics of the estimated minimum

sea level pressure (MSLP) using ADT. In Table 9, their

error estimates are converted to Vmax approximately

by following the method of Bankert and Tag [2002,

using a wind–pressure relationship provided in their Eq.

(2)]. The IR-based multivariate regression technique by

Kossin et al. (2007) was trained and tested by 1940 best

track samples within 3 h of an aircraft reconnaissance.

The IR-based FASI technique (Fetanat et al. 2013) was

trained and tested by 2016 best track samples within 12h

of an aircraft reconnaissance. The most recent IR-based

CNN technique by Pradhan et al. (2018) was also tested

TABLE 6. Comparison of the results for independent estimations

of Vmax and 6-h future Vmax using 2011–13 independent samples

for 85-GHz-only, rain-only, and combined 85-GHz and rain re-

gression models. The R2 value is the portion of total variance ex-

plained by each regression.

85-GHz only Rain only Combined

t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h

ATL (n 5 257)

R2 0.37 0.44 0.54 0.58 0.55 0.57

MAE (kt) 11.47 10.72 9.77 9.24 9.74 9.37

RMSE (kt) 15.31 14.47 12.83 12.23 12.84 12.38

STD (kt) 15.24 14.38 12.81 12.24 12.83 12.39

EPA (n 5 237)

R2 0.41 0.52 0.61 0.71 0.62 0.71

MAE (kt) 12.93 11.60 10.15 9.04 10.08 9.04

RMSE (kt) 17.49 15.95 14.05 12.33 13.97 12.33

STD (kt) 17.43 15.91 14.07 12.35 13.99 12.35

TABLE 7. As in Table 6, but for ATL independent AIRC samples

(n 5 38).

85-GHz only Rain only Combined

t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h

R2 0.32 0.36 0.54 0.53 0.56 0.54

MAE (kt) 11.38 10.44 10.22 9.94 9.98 9.62

RMSE (kt) 15.52 15.24 13.15 12.88 12.79 12.64

STD (kt) 15.64 15.44 12.37 12.62 12.08 12.46
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against an aircraft-reconnaissance-based best track data-

set of 2646 samples. In comparison, the PMW-IE algo-

rithm’s error statistics are in the range of all above

techniques’ error statistics when tested against aircraft-

reconnaissance-based best track samples.

Table 9 also lists three objective techniques that were

trained and verified against best track. These include

the IR-based DAV algorithm (Ritchie et al. 2012, 2014),

CIRAAMSU-based algorithm (Demuth et al. 2004, 2006),

and the SSM/I-based k-nearest-neighbor technique

(Bankert and Tag 2002). While the validation datasets

and periods are different, the PMW-IE algorithm does

appear to be on par with error estimates of all of these

three techniques when verified against best track.

From Table 9, we can see that all of these objective

techniques, including the PMW-IE algorithm presented in

this study, are less skillful than the subjective DT. Using

2003 samples within 2h of an aircraft reconnaissance,

Knaff et al. (2010) demonstrated that the MAE of DT is

between 5 and 11kt, and RMSE of DT between 6 and

14kt. Furthermore, it was shown that the subjective DT is

most skillful for category 2–4 hurricanes. In contrast, most

of the objective techniques become less skillful for major

hurricanes because of the limited training and verification

samples available for extremely intense systems.

The subjective DT utilizes structural information re-

garding the cloud patterns to derive an estimate of TC

intensity. The PMW-IE algorithm here instead uses bulk

metrics of 85-GHz ice scattering and rain rate in the inner

core to estimate TC intensity. Since the TC intensity is

related to both cloud precipitation patterns (the more

symmetric, the more intense) and the intensity of latent

heating (rain rate can be used as a proxy of latent heat-

ing), it is difficult to justify which method is better.

However, it is important to recognize that the PMW-IE

technique provides independent information for TC in-

tensity estimates. Using PMW-IE along with all other

independent techniques including the subjective DT will

reduce the mean error of a weighted consensus.

6. Conclusions and future work

A statistical Passive Microwave Intensity Estimation

(PMW-IE) algorithm for TCs in the ATL and EPA

basins is described. The algorithm uses a TC’s center

location and estimators derived from 85-GHz brightness

FIG. 2. The scatterplot of the best track Vmax vs the Vmax estimated by using (a) the 85-GHz-only, (b) rain-only, and (c) combined

85-GHz and rain regression models for the independent dataset (n 5 257 samples) in ATL basin. (d),(e),(f) As in (a), (b), and (c),

respectively, but for the best track 6-h future Vmax vs the estimated 6-h future Vmax. AIRC samples are highlighted as red. The thin

dotted line represents a perfect 1:1 relationship. The correlation coefficient R is also indicated in each panel.
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temperature and passive-microwave-retrieved rain rate

in the inner core of TCs. It was developed using the full

record of the TRMM TMI observations during 1998–

2013 and a stepwise multiple linear regression approach.

The TMI sample was constrained to include only well-

observed TC overpasses in which 100% of the inner-

core region was observed. All landfalling cases were

excluded. The final dataset included 1219 TMI over-

passes of 239 TCs in ATL and 1107 overpasses of 264

TCs in EPA. It was further separated into dependent

samples for regression model development and in-

dependent samples for model verification.

Candidate estimators include five variables derived from

85-GHz brightness temperatures and seven variables de-

rived from TMI 2A12 near-surface rain-rate retrievals, all

of which are highly correlated with the current best track

maximum wind intensity (Vmax) and 6-h future Vmax of

TCs at 99% significance level. These variables are calcu-

lated within a fixed inner-core radius, which is selected to

produce the best correlations. This optimal inner-core

FIG. 3. As in Fig. 2, but for the independent dataset (n 5 237 samples) in the EPA basin.

TABLE 8. Bias analysis of the estimated Vmax and 6-h future Vmax vs best track values for different TC intensity groups. Positive

(negative) values mean overestimation (underestimation). Unit is kt.

85-GHz only Rain only Combined

t 5 0 h t 5 6 h t 5 0 h t 5 6 h t 5 0 h t 5 6 h

ATL

All TCs (n 5 257) 1.73 1.89 21.04 20.50 20.92 20.34

Tropical depressions (n 5 48) 17.11 13.47 9.46 7.05 9.17 7.26

Tropical storms (n 5 157) 0.54 1.49 22.09 20.57 22.04 20.49

All hurricanes (n 5 49) 29.70 27.03 28.82 27.11 28.03 26.69

EPA

All TCs (n 5 237) 1.78 1.52 0.49 0.25 0.53 0.25

Tropical depressions (n 5 110) 9.85 8.06 6.05 4.93 5.95 4.93

Tropical storms (n 5 85) 1.95 1.63 0.33 0.20 0.43 0.20

All hurricanes (n 5 39) 221.79 218.05 215.84 213.59 215.63 213.59
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radius is 100km for the ATL and 75km for EPA samples.

Similar results were shown in Cecil and Zipser (1999) with

the highest correlations produced by ice-scattering features

averaged with a 18-radius circle.
Among the candidate estimators, the fraction area

of inner-core region covered heavy rain (rain rate $

5mmh21, H_RA, correlation coefficients5 0.8–0.87) and

unconditional mean rain rate in the inner core (correlation

coefficients5 0.8–0.84) are best correlated with Vmax and

6-h future Vmax. On the other hand, among 85-GHz ice-

scattering variables, the highest correlation coefficients

(0.64–0.75) are from the fractional inner-core area covered

by 85-GHz PCT # 275K. The multiple linear correlation

coefficients with Vmax range from 0.69 to 0.74 for 85-GHz

variables and from 0.86 to 0.87 for rain variables. This

suggests that rain metrics are a better indicator of TC in-

tensity than 85-GHz ice-scattering metrics. Better correla-

tions were found between these TMI-derived variables and

6-h future Vmax. This is consistent with Cecil and Zipser

(1999) who found that 85-GHz ice-scattering parameters

are better correlated with future than current TC intensity.

The algorithmwas developed forATLandEPAsamples

separately. In each basin, three regression models were

derived using 1) 85-GHz-only variables, 2) rain-rate-only

variables, and 3) combined 85-GHz and rain variables

after eliminating variables that cause multicollinearity and

overfitting problems using a stepwise regression approach.

Rain-only and combined models perform better than the

85-GHz-only model. Lower errors are found for estimating

the 6-h future Vmax than estimating the current Vmax

using all threemodels. This suggests that it is optimal to use

passive-microwave-retrieved rain variables observed a

few hours earlier to estimate TC intensity. The MAE

(RMSE) of 6-h future Vmax is 9 (12) kt when testing

the combined models with ATL and EPA independent

samples. Aircraft-reconnaissance-based independent

samples yielded a MAE of 9.6 kt and RMSE of 12.6 kt

for estimating 6-h future Vmax.

A comparison of error statistics with other TC in-

tensity estimation techniques suggest that the PMW-IE

algorithm is on par with other objective satellite-based

methods. The PMW-IE algorithm uses a unique data

source, that is, the high-resolution passive microwave

sensor TMI, and a different approach to estimate TC

intensity compared to other satellite-based techniques.

This makes intensity estimates from the PMW-IE algo-

rithm independent than other methods. Because of this

independence, the PMW-IE method, if available in real

TABLE 9. Comparison of the error statistics (MAE and RMSE) of TC intensity Vmax (or MSLP in hPa converted to Vmax in kt) of this

study (PMW-IE) and other satellite-based TC intensity estimation methods.

Methods Sensors Verification against MAE RMSE Reference(s)

Dvorak technique Visible, IR Within 2-h aircraft-

reconnaissance-based

best track

5–11 kta (avg ;8 kt) 6–14 kta (avg ;10 kt) Knaff et al. (2010)

Deep convolutional

neutral network

IR Aircraft-reconnaissance

datasetb
— 9–16 kt (avg 5 11.7 kt) Pradhan et al. (2018)

Feature analogs in

satellite imagery

IR Within 12-h aircraft-

reconnaissance-based

best track

10.9 kt 12.7 kt or 9.8 hPa Fetanat et al. (2013)

Advanced Dvorak

technique

IR Within 1-h aircraft-

reconnaissance-based

best track

9.2 hPa (;10.9 ktc) 12.5 hPa (;14.9 ktc) Olander and

Velden (2007)

Multivariate

regression

IR Within 3-h aircraft-

reconnaissance-based

best track

13.2 kt 16.7 kt Kossin et al. (2007)

Deviation angle

variance

IR Best track — 12–15 kt Ritchie et al.

(2012, 2014)

Warm-core anomaly AMSU Best track 10.8 kt 14 kt Demuth et al.

(2004, 2006)

Feature-based

k-nearest-neighbor

SSM/I Best track 14–16 kt 18.1–19.8 kt Bankert and

Tag (2002)

PMW-IE combined

model for t 5 6 h

TMI Best track/within 3-h

aircraft-reconnaissance-

based best track

9/9.6 kt 12/12.6 kt This study

a These values are approximated from tables and figures since they were not explicitly stated in the reference paper.
b The time length was not specified in the reference paper on how to choose the reconnaissance data to match with the satellite or best

track time.
c Conversion between maximum sustained wind and minimum sea level pressure is made approximately by using the wind–pressure

relationship provided in Bankert and Tag (2002)’s Eq. (2).
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time or near–real time, will be able to provide additional

information for TC forecasters who can utilize different

methods to achieve more accurate intensity estimates.

The satellite consensus (SatCon) technique incorporates

TC estimates from several objectivemethods to achieve a

better estimate than any of its individual parts (Herndon

and Velden 2018). The PMW-IE algorithm may provide

independent information for SatCon.

To implement the PMW-IE algorithm in real time

to estimate TC intensity, an important next step work

is to adapt the TMI-based algorithm to other micro-

wave sensors that are currently available. The NASA

Global PrecipitationMission (GPM) 1C-constellation and

2A-GPROF-constellation near-real-time products are the

suitable candidate for this adaption. The GPM constel-

lation contains GPM Microwave Imager (GMI), which

is the successor of TMI, AMSR-2, and SSMIS. The GPM

1C-constelation near-real-time product provides the

85–91-GHz observations, which includes the intercalibrated

brightness temperatures from GMI, ASMR2, and SSMIS.

Themicrowave rain retrievals from theGPM 2A-GPROF-

constellation near-real-time product contain the rain rates

retrieved fromGMI, AMSR2, and SSMIS using theNASA

GPROF algorithm (Kummerow et al. 1996). Although the

brightness temperatures in different frequencies among

85–91GHz have been intercalibrated against TMI in the

GPM1Cproduct, the error statisticsmight still be different

for different sensors because of different spatial resolutions

among TMI, GMI, AMSR2, and SSMIS. It is necessary to

perform verifications against GPM 1C and 2A data before

implementing the PMW-IE algorithm operationally. We

might have to develop similar but different regression

models for the lower-resolution sensor (SSMIS).

Both of the TRMM and GPM constellation observa-

tions cover all global TC-prone basins. This study focuses

on ATL and EPA basins only. Future work will be done

to develop similar models for TCs in other basins in-

cluding the western North Pacific and Southern Hemi-

sphere basins. Another potential future work is to adapt

an automatic TC center detection algorithm, such as the

Automated Rotational Center Hurricane Eye Retrieval

(ARCHER; Wimmers and Velden 2010). Currently

the PMW-IE technique uses the center position in-

terpolated from the best track information. Further

analysis is required to evaluate the benefit of using

ARCHER relative to the best track interpolation. It is

also possible that the ARCHER output might help

determine the inner-core radius of each microwave

observation of TCs, making further improvement of

the PMW-IE algorithm possible.
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