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ABSTRACT

Rainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM)

precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the

Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall

product. The dataset consists of 252 TRMMoverpasses of tropical cyclones from 2002 to 2010 within a 230-km

range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall esti-

mates are averaged to a uniform 1/78 square grid. The grid boxes are also divided by their TMI surface

designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to

the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to

ground reference data. Version 7 of the PR 2A25 is the best-performing algorithmover all three surface types.

Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI

V7 probability-of-rain parameter creates ambiguity in differentiating light rain (#0.5mmh21) and non-

raining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates,

resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased

at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships

between rain rate and 85-GHz ice scattering.

1. Introduction

The recent release of version 7 (V7) of the Tropical

Rainfall Measuring Mission (TRMM) precipitation ra-

dar (PR) 2A25 and Microwave Imager (TMI) 2A12

rainfall algorithms presents an opportunity to compare

the new version (V7) to the previous release, version 6

(V6). It is commonly accepted that these algorithms

perform well on large spatial and temporal scales, but

they often have more significant local errors that are

problematic on a case-by-case basis. These errors tend

to be amplified in tropical cyclones (TCs), which pro-

duce anomalously high rain rates that are difficult to

capture using passive microwave techniques. Since in-

land flooding is a major cause of deaths and damages in

TCs, satellite precipitation algorithms have the potential

to be a valuable tool for forecasters to pinpoint the

location of the heaviest rainfall ahead of a TC landfall,

when the storm is still out of range of ground-based ra-

dar. Combined algorithms like the TRMMMultisatellite

PrecipitationAnalysis (TMPA;Huffman et al. 2007) also

use microwave algorithms similar to the TMI 2A12 as

a data source and for calibration. Over the open ocean,

satellite-derived precipitation algorithms are the best

tool for real-time precipitation analysis. Numerical

weather prediction output can also provide rainfall in-

formation, but it often has questionable accuracy in

convective systems including TCs (Ebert et al. 2007).

The main goal of this study is to quantify the errors and

sources of bias in the TRMM precipitation algorithms

using a surface reference dataset. This study investigates

TCs, which represent a specific meteorological regime

that is individually selected from the monthly and annual

datasets. Interpreting satellite precipitation algorithms for

a particular regime can be difficult because the algorithms

have higher levels of uncertainty on smaller scales. Biases

in the algorithm code that are usually negligible may be

accentuated in tropical cyclones. To reduce any bias from

a particular storm or geographical region, this study uses
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a large dataset of 252 TRMM overpasses of TCs near

land, landfalling TCs, and postlandfall TCs across the

entire southeastern United States.

Satellite precipitation algorithms are usually divided

into three categories: ocean, land, and coast. Ocean al-

gorithms derived from microwave radiometer mea-

surements can use both low-frequency emission-based

channels and high-frequency scattering-based channels.

Land algorithms can only use the high-frequency scat-

tering channels, as high and variable land surface emis-

sivity combine to mask the emission signature of liquid

precipitation. Coastal algorithms relymostly on scattering-

based channels while removing artificial rain signatures

associated with different fractions of land and ocean in

eachmicrowave footprint (McCollum and Ferraro 2005).

Retrieval over land is more difficult without the emission

channels, as the scattering signatures characterize pro-

cesses higher in the cloud that do not directly relate to

surface rainfall (Wilheit et al. 2003). Oceanic algorithms

are also dependent on the scattering channels to achieve

a higher resolution than the emission channels can in-

dependently provide. The difference between land and

ocean causes fewer uncertainties in the PR algorithm,

although variations in the surface cross section can bias

the rain rate. Over ocean, the backscatter is related to

sea surface wind, while over land, a soil surface and

vegetation backscattering model must be used (Seto and

Iguchi 2007). The PR’s 2.17-cm wavelength (13.8-GHz

frequency) also results in attenuation, especially in

heavy rainfall (Iguchi et al. 2000).

Version 7 is relatively new, so most previous studies

compare version 6 relative to reference data. Studies

that use instantaneous data are most relevant to this

work, along with seasonal comparisons focusing on the

summer, fall, and/or wet season. Jiang and Zipser (2010)

used TRMM to examine the contribution of TCs to total

TC-season (June–November) precipitation. Across the

southeastern United States, both PR V6 and TMPA

(3B42) agreed that TCs contribute approximately 5%–

20% of total precipitation, with the highest contribution

over ocean and lowest inland.When considering just the

highest 3B42 rain rates (.20mmh21), the contribution

from TCs is 12% over land and 31% over ocean (Prat

andNelson 2013).Wolff and Fisher (2008) evaluated PR

and TMI V6 at the TMI footprint scale over land, ocean,

and coast at the TRMM Ground Validation (GV) sites.

They found that PR V6 underestimates rainfall relative

to GV, with the most significant underestimation oc-

curring over land and coast and at rain rates greater than

about 10–20mmh21. The TMI V6 underestimates GV

and PR over ocean and coast at both lower and high

rain rates but is greater than the PR for.20mmh21 rain

rates over land. Amatai et al. (2009) found similar PR

V6 underestimation relative to the National Oce-

anic and Atmospheric Administration Next-Generation

Quantitative Precipitation Estimate (Q2) product in-

cluding a case study of Hurricane Humberto at landfall.

They also determined that the probability density

functions (PDF) of PR V6 are single-peaked and shifted

toward lower rain rates, implying a greater PR strati-

form–convective ratio than the double-peaked Q2

PDFs. The specific uncertainty values of both satellite

and ground radar estimates remains unquantified.

Regarding the transition from V6 to V7, Wang et al.

(2009) highlighted several known TMI V6 inconsis-

tencies over land, including overestimation in deep

convection and underestimation in warm rain regimes

relative to PR V6 and rain gauges. Gopalan et al. (2010)

describe the steps taken in the TMIV7 land algorithm to

correct these issues. Specifically, they added a more

comprehensive set of TMI–PR collocations to improve

the relationship between TMI rain rates and the 85-GHz

channel. Their results show that while TMI V7 improves

on the global ‘‘wet’’ bias, it does not reduce regional

biases that are driven mostly by surface screening, emis-

sivity, warm rainfall, and deep convection. They also

stress that since the TMI algorithm is trained using PR

data, it is important to perform validations using an in-

dependent dataset. The main changes to PR V7 include

several adjustments to the attenuation correction and

the implementation of a new drop size distributionmodel.

The most significant change to the TMI V7 ocean algo-

rithm is the addition of a probability of precipitation

parameter. Pixels are no longer screened as raining or

nonraining before the Bayesian scheme is applied. As

a result, many pixels that were previously classified as

nonraining in V6 are now assigned a percent probability

of rain with a nonzero raining rate in V7. The algorithm

documentation recommends using a 50% probability of

rain threshold in the field of view when comparing in-

stantaneous PR and TMI rain rates [National Aeronautics

and SpaceAdministrationGoddard Space Flight Center

(NASAGFSC) 2012]. Over land, pixels are still screened

as raining or nonraining. The only change to the TMI

coastal algorithm is a change in the land–ocean classifi-

cation (see section 2c). Use of the stage-IV reference

(discussed in section 2a) in this study allows for in-

dependent evaluation of all four TRMMalgorithms (PR

V6, PR V7, TMI V6, and TMI V7).

2. Data

a. Datasets

This study utilizes satellite data from TRMM and

ground-based radar data from the Next Generation
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Weather Radar (NEXRAD) Multisensor Precipitation

Estimates (MPE) product (Fulton et al. 1998; Fulton

2002). The multisensor radar estimates are derived from

a combination of Weather Surveillance Radar-1988

Doppler (WSR-88D) precipitation estimates (Fulton et al.

1998) and real-time surface rain gauge observations

from the Hydrometeorological Automated Data Sys-

tem. Specifically, this study uses the stage-IV dataset,

which is a mosaicked national product available from the

National Centers for Environmental Prediction (NCEP).

The stage-IV data are convenient because they combine

precipitation data from the regional forecasting centers

into a single product available in an hourly format. A

major advantage of the stage-IV dataset is that it covers

a larger geographical area than the TRMMGVprogram

(Wolff et al. 2005). Previous studies have identified

various biases within the stage-IV dataset. By compar-

ing two stage-IV pixels with rain gauges at an hourly

time scale, Habib et al. (2009b) found a conditional bias,

with overestimation at rain rates less than 0.5mmh21

and underestimation at rain rates greater than

10mmh21. The stage-IV hourly estimates correlate well

with surface rain gauges (0.8–0.9), with more scatter and

lower correlations at light rain rates. The main concern

for this study is the high event scale bias, which was

found to reach up to 625% of the event total rainfall in

half of events.

The stage-IV data are compared with two TRMM

rainfall algorithms, the PR 2A25 algorithm (Iguchi et al.

2000) and the TMI 2A12 algorithm (Kummerow et al.

1996, 1998). The TRMM data source is the Tropical

Cyclone Precipitation Feature (TCPF) database (Jiang

et al. 2011). The TCPF database includes global TC best-

track information, collocated PR and TMI measure-

ments and retrievals, and environmental parameters

derived from NCEP reanalysis. Versions 6 and 7 of the

algorithms are used, resulting in a total of four TRMM

rainfall estimates for each overpass. Only data within

the PR swath are considered, which has a 247-km width

for the period of interest (after 2001 orbital boost). The

TRMM and stage-IV dataset are both available for the

2002–10 Atlantic Ocean hurricane seasons. The PR has

a minimum reflectivity threshold of 17–18 dBZ, which

limits its ability to resolve rain rates below 0.2–

0.4mmh21. The TMI 2A12 estimates rain rates as low as

0.1mmh21 but has limited ability to accurately detect

warm rainfall over land. As a result, any comparison

between the estimates has lowest confidence at the

lightest rain rates.

b. Data selection

A semiautomatic matching algorithm is applied to

find TRMM overpasses within range of ground-based

radar data. First, overpasses of interest are identified by

comparing the latitude and longitude coordinates of

the best-track TC center with the latitude–longitude of

WSR-88D locations in the southeastern United States.

Second, the overpasses are manually filtered to remove

storms where the PR swath is too far from the coast and

storms where a negligible amount of TC-related raining

features are within range of the ground-based radars. The

subjective criteria in this step are relatively loose: over-

passes are accepted if any TC-related precipitation area is

identified within TRMM and radar range. The total of

252 overpasses include some cases where the TC center

is not necessarily located right along the coast, as the

outer bands in large TCs can extend up to 500 km or

more from the TC center. Since the PR swath does not

cover the entire storm, all overpasses are only repre-

sentative of a small portion of the TC, mostly the outer

bands. The other subjective step in the data selection

process is determining the cutoff between TC- and non-

TC-related rain features. A rectangular box is manually

drawn around each swath to designate the area around

all TC-related precipitation within the PR swath.

After the data are selected, the pixel-level algorithm

datasets are averaged to a common resolution. The grid

averaging process must be considered carefully, since

any change to the algorithms’ native resolution will in-

troduce additional random errors into the comparisons.

The stage-IV, PR 2A25, and TMI 2A12 datasets all have

different resolutions. The stage-IV resolution is 4 km 3
4 km, the PR 2A25 is 5 km3 5 km, and the TMI 2A12 is

about 5.5 km 3 12 km. The TMI 2A12 dataset has the

lowest resolution and therefore limits the resolution of

the grid for comparison. The TMI 2A12 is aligned so the

5.5 km side is across swath (perpendicular to the satellite

motion) and the 12 km side is along swath. However,

observations from the lower-resolution 10-, 19-, and

37-GHz channels are included in the TMI 2A12 algo-

rithm, so the effective field of view is much larger than

the footprint. This study uses relatively small grid boxes

with a 1/78 by 1/78 resolution, which equates to about

16 km latitude by 13 km longitude. All pixel-level ob-

servations are averaged into each grid-based rain rate.

The probability of rain was not consideredwhen selecting

TMI V7 pixels over ocean, although the parameter is

discussed separately in section 3g.

The temporal resolution of the different datasets must

also be considered in the matching process. The TRMM

data are instantaneous rain rates (mmh21), while the

stage-IV dataset is an hourly rainfall accumulation (mm)

based primarily on the aggregate precipitation estimates

from all individual WSR-88D volume scans within that

hour period. Although it is possible to choose the indi-

vidual radar scan closest to the TRMM overpass time,
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the raw radar data can experience errors from radar

calibration, anomalous propagation, brightband enhance-

ment, radar beam blockage, nonuniform vertical package

of reflectivity, and uncertain microphysical parameters

such as the reflectivity–rainfall Z–R coefficients (e.g.,

Smith et al. 1996; Nelson et al. 2010; Breidenbach and

Bradberry 2001). Raw radar rainfall estimates do not

benefit from the mosaicking, bias corrections, and rain

gauge data in the stage-IV dataset. The main additional

source of error from the stage-IV data is the change in

rain rate as the precipitation evolves and propagates

over an hourly period. The errors should be at their

lowest when the TRMM overpass occurs around 30min

past the hour and when the bands within the TC are

relatively stationary. If the TRMM overpass is within

10min of an hour, the two closest stage-IV estimates are

averaged together. For convenience, this study often

refers to the stage-IV data in units of rain rate (mmh21),

even though it is actually a 1-h accumulation.

An example of the averaged data is shown in Fig. 1.

Hurricane Jeanne (2004) was captured by TRMM

at 0447 UTC 26 September 2004. The 1-h stage-IV

estimate from 0400 to 0500 UTC is used as the refer-

ence dataset. The TMI 85-GHz polarization-corrected

brightness temperature (PCT; Spencer et al. 1989) is

included for reference in Fig. 1f. The 85-GHz PCT is

adjusted to the same grid scale by taking the lowest

brightness temperature value within each grid box. In

Figs. 1a–e, the gray boxes represent accepted data points

with zero rain. A qualitative comparison between the

TRMM algorithms and stage-IV dataset reveals that the

eye, inner core, and rainbands line up fairly well be-

tween the different estimates at the pixel level. The lo-

cation of the heaviest rain is different in each image. The

stage IV has the heaviest rain totals (.35mmh21) over

land, while the PR has the highest rates over ocean.

Versions 6 and 7 of the PR show surprisingly large dif-

ferences, although in most other cases they are in much

closer agreement than this example. The center is cor-

rectly located by the TMI algorithms, but the banding

structures are not as well defined. Another error source

is visible over ocean in the TMI V7, as the TMI V7 de-

tects rain everywhere to the northeast of the center,

while all the other algorithms have a rain-free area

FIG. 1. Example plot of a TRMM overpass from 2004 Hurricane Jeanne compared with the stage-IV 1-h rainfall. The TRMM overpass

occurred at 0447 UTC and the stage-IV rainfall is a total accumulation from 0400 to 0500 UTC. All data are averaged to a matching 1/78
grid. The algorithms are (a) PR 2A25 V6, (b) PR 2A25 V7, (c) stage IV, (d) TMI 2A12 V6, (e) TMI 2A12 V7, and (f) TMI minimum

85-GHz PCT.
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between the bands. This discrepancy is seen on almost

all TMI overpasses over ocean and arises as a result of

the TMI V7 probability of rain parameter.

c. Spatial and temporal averaging

The differences introduced by the spatial and tem-

poral grid averaging are estimated by comparing the raw

pixel-level rain rates to the gridded data from the ex-

ample overpass in Fig. 1. Figure 2a shows the cumulative

data functions (CDF) distribution of the raw pixel-level

data compared with the grid-averaged rain rates. The

main difference caused by decreasing the resolution

with grid averaging is an increase in the raining area

from nonraining rain pixels that get averaged with

raining pixels. Grid averaging increases the stage IV by

20%–25% and the PR and TMI areas with rain by 15%–

20% relative to pixel-level areas with rain. Bins with

light rain rates are also affected, but the dominant dif-

ference between the distributions at rain rates greater

than zero is caused by the algorithms themselves and not

the grid averaging. The CDFs are shifted to the right and

converge at moderate to high rain rates.

The difference caused by precipitation advecting over

the hourly MPE period can also be roughly estimated.

The PR V6 overpass in Fig. 1 is hypothetically advected

at a constant zonal velocity of 5, 10, and 15m s21 using

1-min time steps over a 1-h period. Figure 2b displays

CDFs of the absolute difference between the condi-

tional (.0) grid-averaged PRV6 rain rates and the same

rain rates averaged over the 1-h period after being

advected. The average absolute difference between the

original and advected orbits is 0.8, 1.4, and 1.9mmh21

for the respective 5, 10, and 15m s21 advection speeds.

For the 252 storms in this study, the average storm

center speed is 5.3m s21 and only 15 storms are moving

faster than 10m s21. However, individual bands and

storm cells also evolve relative to the storm center, so

the actual difference between the instantaneous and

hourly averaged PR rain rates is likely between the

5 and 10m s21 distributions. Figure 2 illustrates that the

overall rain-rate distributions should accurately reflect

the algorithms themselves, although caution is required

when comparing individual grid boxes directly.

d. Final dataset

The final dataset is divided into land, ocean, and

coastal/mixed components using the TMI surface flag.

The surface flag is stored at the TMI 2A12 resolution, so

some of the lower-resolution grid boxes inevitably have

two types of surface flags. To resolve this issue, grid

boxes with less than two-thirds ocean or land surface

flags were added to the coast/mixed category. Some of

the surface flag definitions changed between V6 and V7,

resulting in a different number of grid boxes for each

surface category for the two algorithm versions. A graph-

ical representation of the final dataset is displayed in Fig. 3.

The red colored coast/mixed category extends farther

out to sea and covers only large inland lakes in V7. Grid

boxes where all three version 6 or 7 estimates (PR, TMI,

and stage IV) agree on a zero rain rate are removed from

FIG. 2. (a) CDF of the pixel-level rain rates (black lines) and the grid-averaged rain rates (gray lines) for the stage-

IV, PR V6, and TMI V6 rain rates. (b) CDF of the absolute difference between the grid-averaged PR V6 rain rates

compared with the 1-h-averaged PR V6 rain rates after being advected zonally at 5, 10, and 15m s21. Both panels

exclusively use data from the TRMM orbit 39125 in Fig. 1.
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FIG. 3. Geographical distribution of 1/78 grid boxes color coded by TMI surface flag. Darker shades indicated higher data coverage. Grid

boxes where the PR, TMI, and stage IV all estimate zero rain are not included in this figure.
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the dataset, leaving only the matches where at least one

estimate has a nonzero rain rate. As a result, a total of

210 741 grid boxes are reduced to 116 025 for V6 and

120 447 for V7. The color shading in Fig. 3 represents the

number of times that each grid box is included for

a storm in the dataset. In V6, the dataset is 25% ocean,

58% land, and 17% coast/mixed. In V7, the different

surface flags change the distribution to 22% ocean, 56%

land, and 21% coast/mixed. It is unlikely that the change

in surface flag designations has a quantifiable effect on

the results of this study.

The spatial range of the dataset cuts off to the north at

the apex of the TRMM orbit, 358N. Over ocean, the

cutoff is 230 km from the nearest WSR-88D location.

The stage-IV grids that are located over ocean do not

benefit from gauge validation and likely suffers from

range degradation associated with beam overshoot and

partial beam filling (Breidenbach and Bradberry 2001).

Using seasonal WSR-88D rainfall estimates in Oklahoma,

Smith et al. (1996) found that warm-season underesti-

mations are most pronounced beyond 150 km and the

problem is primarily caused by lack of detection. The

stage-IV dataset might be missing some shallow pre-

cipitation over the oceanic range, although deeper,

convective rainfall should be detected. However, the

results from this study suggest that stage IV actually has

greater rain coverage over ocean than the PR. Near the

Florida Straits, the stage-IV data range cuts off within

230 kmof theKeyWest andMiami radars, so the edge of

the dataset takes on a square appearance in that area.

The number of observations varies geographically be-

cause of both the climatological storm tracks and the

TRMM orbital geometry. The North Carolina coast has

the most observations, including 9 from one storm: 2005

Hurricane Ophelia. Another maximum occurs around

the northern coast of Florida, which saw several slow-

moving storms in 2004. Farther south, the TRMM or-

bital track makes PR swath more likely to miss the

storm, resulting in a smaller number of observations.

Figure 3 also designates the location of the TC centers

at the time of the TRMM overpasses using1 signs. Most

of the TC centers are located within about 250km of the

coastline, but a few are located well inland and others are

500 km or more from the coast. Some of the points from

the same storm are clustered together, indicating that the

storm was seen by TRMM on consecutive orbits. Large,

slow-moving storms north of 308 latitude were observed

by as many as four overpasses in a row, with each over

pass coming about 90min apart. In terms of TC intensity,

the dataset includes 94 tropical depressions, 104 tropical

storms, 40 category 1–2 hurricanes, and 15 category 3–5

hurricanes. Many of the tropical storms and depressions

were originally landfalling hurricanes that still had a

much larger and more intense rain field than an average

storm of that intensity. Because there are 252 overpasses

included, any local or storm-specific biases should not

factor strongly into the overall results. No regional biases

were detected.

3. Statistical methods

Several statistical methods are utilized to compare the

algorithms. Mean rain rates (conditional and uncon-

ditional) are computed to determine the overall rainfall

magnitudes. The unconditional rain rate is calculated as

the average of all grid boxes, including those that are

raining and nonraining. The conditional rain rate in-

cludes only the raining, or nonzero, grid points from

each individual algorithm. The conditional rain rate has

a different sample size for each algorithm depending on

how often it assigns nonzero rain rates. The percentage

of pixels with rain rates . 0, 1, 5, and 10mmh21 are

provided to aid in the comparison. Other commonly

used statistics in this study include the use of PDFs,

scatterplots, and Pearson’s correlation coefficient.

a. Bias decomposition

Bias statistics are most useful when each of the

four TRMM algorithms is individually evaluated rela-

tive to the stage-IV estimates. For example, the PR

2A25 version 6 and stage-IV algorithm can be compared

for only the pixels where either of the two algorithms is

.0. The individual comparison removes any bias that

PR V7 or the TMI algorithms have on the sample se-

lection. From these results, the mean bias is the mean

difference in rain rate between the respective TRMM

algorithm (RT) and the stage-IV estimate (RIV):

B5
1

n
�(RT 2RIV) , (3.1)

where n is the sample size where either RT or RIV is

greater than zero. It is also desirable to decompose the

mean bias into three components, following the formu-

las used in Habib et al. (2009a). The hit bias (HB) is

defined as the portion of themean bias contributed from

grid points where the TRMM and stage-IV algorithms

both agree that the rain is nonzero:

HB5
1

n
�[RT(RT . 0 and RIV. 0)

2RIV(RT . 0 and RIV . 0)] . (3.2)

The missed rain bias (MB) is the portion of the mean

bias contributed from grid points where the TRMM
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rain rate is equal to zero and the stage-IV rain rate is

nonzero:

MB5
1

n
�RIV(RT 5 0 and RIV . 0). (3.3)

More simply put, themissed rain bias is computed where

the TRMM algorithm estimated zero rain in a grid box

where rain was detected by stage IV. Finally, the false

rain bias (FB) is the portion of the mean bias contrib-

uted from grid points where the TRMM rain rate is

nonzero and the stage-IV rain rate is equal to zero, or

where the TRMM algorithm falsely estimated nonzero

rain:

FB5
1

n
�RTRMM(RTRMM . 0 and RIV 5 0). (3.4)

The three components of bias add up to the mean bias.

The bias decomposition is most useful for determining the

percentage of the total bias that can be attributed to de-

tection issues (i.e., missed and false bias) relative to the

rain-rate magnitude (hit bias).

b. Mean error decomposition

The root-mean-square error (RMSE) is a commonly

used statistic that is applied in this study to compute the

average difference between the TRMM algorithms and

the stage-IV reference dataset. Using simple linear re-

gression, the RMSE can also be decomposed to provide

insight on what fraction of the difference between the

PR/TMI and stage IV can be attributed to systematic

(RMSEs) and random (RMSEr) errors, which add up to

the total RMSE:

RMSE5RMSEs1RMSEr5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�(RT 2RIV)

2

r
. (3.5)

From Willmott (1982), the systematic RMSE is defined

as

RMSEs 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�(R0

T 2 RIV)
2

r
, (3.6)

and the random RMSE is

RMSEr 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�(RT 2 R0

T)
2

r
. (3.7)

In the above equations, RT is the rain rate for a TRMM

grid box, RIV is the corresponding stage-IV rain rate for

the grid box, andR0
T is the TRMM rain rate predicted by

least squares regression of the TRMM rain rates,

R0
T 5 a1 b3RIV . (3.8)

In other words, the systematic error is the mean squared

difference between the predicted TRMM distribution

and the stage-IV estimate. The random error is themean

squared difference between the TRMM estimate and

the predicted TRMM distribution. The percentage of

the MSE that is attributed to systematic error is simply

RMSEs/RMSE. These statistics were originally used to

evaluate model performance (Willmott 1982; Willmott

et al. 1985) although they have more recently been used

in Habib et al. (2009a,b) to compare stage-IV data with

TRMM and rain gauge observations. One addendum

with this decomposition method is that the stage-IV

dataset is assumed to be correct. It is not possible to de-

termine if the systematic error can be attributed to the

TRMMor stage-IV dataset, just that there are systematic

differences between them. However, the relative differ-

ence in systematic error between the PR and TMI data-

sets comparedwith the same stage-IV reference does give

information about how much systematic error can be

attributed to each TRMM algorithm.

4. Results

a. Mean values

The mean values from the combined dataset of 252

storms are displayed in Table 1. The leftmost section

displays the number of grid boxes, which is separate for

V6 and V7 because of the difference in land, ocean, and

coastal surface designations. Consequently, the stage-IV

rain rates are calculated independently using the dif-

ferent surface flags in V6 and V7. Unlike most other

statistics in this study, these sample sizes add up to the

total sample of around 210 000 grid boxes that includes

zero rain boxes. The mean rain rates are easiest to in-

terpret by comparing with Table 2, which displays the

percentage of all grid boxes with rain rates. 0, 1, 5, and

10mmh21 for each algorithm.

Over ocean, the unconditional mean rain rates are all

within about 10% of each other. In V6, the PR and TMI

have lower unconditional rain rates and greater condi-

tional rain rates than the stage-IV reference. By com-

paring to Table 2, it is apparent that this discrepancy is

caused by the stage IV detecting 8%–9%more nonzero

grid boxes than the TRMMalgorithms. The TMI has the

highest conditional rain rate out of the V6 ocean algo-

rithms because of a combination of fewer raining grid

boxes and a greater contribution from grid boxes with

rain rates . 5mmh21. The number of PR V7 raining

grid boxes increase slightly at all rain-rate criteria rela-

tive to V6, including an 11% increase in the percent of
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grid boxes with rain rates greater than 5 and 10mmh21

relative to V6. It is somewhat surprising that the stage-

IV dataset finds more areas of light rain than the PR in

both V6 and V7 because the oceanic dataset is almost

completely located between 100 and 230 km from the

nearest ground-based radar site. It is expected that some

shallow and/or stratiform precipitation would be un-

derneath the lowest elevation radar scan. However, the

PR does have a 17–18-dBZ minimum detection thresh-

old, so it is possible that both datasets are missing some

very light precipitation. The TMI V7 has over a 30%

increase in grid boxes. 0 relative to V6, a consequence

of the probability-of-rain parameter (see section 4g).

The mean rain rates over land are generally much

lower than over ocean. Based on the unconditional rain

rate, the PR and TMIV6 appear to agree almost exactly,

but the distribution of rain rates in Table 2 suggests that

the TMI V6 is assigning zero rain to some of the grid

boxes with PRV6 and stage-IV rain rates between 0 and

1mmh21. Light rainfall is notoriously difficult to detect

over land, although it appears that rain rates. 1mmh21

are mostly being detected successfully. When the crite-

ria rise to .1mmh21, TMI V6 is more closely in line

with stage IV than the PR. In V7, the percentage of grid

boxes . 0 remains almost exactly the same relative to

V6, but the TMI V7 mean rain rates are considerably

lower than V6. The TMI V7 land algorithm finds fewer

grid boxes in the .1 and .5mmh21 rain-rate ranges.

All of the TRMM land algorithms find a significantly

smaller percentage of raining grid boxes over land relative

to over ocean. The stage-IV reference is also lower over

land, but by a much lower margin. Lower raining cov-

erage and rain rate over land relative to ocean is rea-

sonable, since TCs are weaker after landfall, but it is

likely that the decrease between land and ocean in the

PR and especially the TMI is too steep. The mean rain

rates over coastal areas are generally in between the

ocean and land values. Figure 3 shows that the majority

of coast/mixed pixels are over coastal oceanic areas, so it

is not surprising that the stage-IV unconditional rain

rates are closer to the oceanic estimate. However, in

both V6 and V7, the PR detects about 10% fewer grid

boxes . 0 than the stage IV, which is similar to what is

observed over land. The coast/mixed mean rain rates do

not change much between V6 and V7 because the TMI

coastal algorithm was not updated in V7 (NASA GFSC

2012).

b. Contributions to mean rain rate

The mean rain-rate analysis is a good starting point,

but it is incomplete without additional information

about the distribution of rain rates and their relative

contributions to the mean rain rate. FromTable 2, about

half of the nonzero grid boxes have a rain rate less than

1mmh21 and only around 6%–8% have a rain rate

greater than 5mmh21. Although the higher rain rates

make up just a small portion of the sample, they have

a disproportionately large influence on the mean rain

rates and hence the disagreements between the algo-

rithms. Figures 4 and 5 both show the contribution to the

TABLE 1. Sample size of all grid boxes including zero rain rates, unconditional mean rain rate (including all grid boxes) and conditional

mean rain rate (including only grid boxes with nonzero rain rates).

No. grid boxes $ 0 Unconditional mean rain rate Conditional mean rain rate

Algorithm Ocean Land Coast/mix Ocean Land Coast Ocean Land Coast

Stage IV (V6) 47 426 126 446 36 869 1.33 1.07 1.27 2.52 2.20 2.60

PR V6 1.25 0.83 0.98 2.79 2.21 2.57

TMI V6 1.28 0.83 0.83 2.90 2.73 3.05

Stage IV (V7) 34 590 128 356 47 620 1.37 1.07 1.26 2.55 2.21 2.54

PR V7 1.34 0.85 1.06 2.95 2.31 2.74

TMI V7 1.44 0.65 0.81 1.89 2.16 3.05

TABLE 2. Percentage of all grid boxes with rain rates . 0, 1, 5, and 10, divided by algorithm and surface flag.

% grid boxes . 0 (%) % grid boxes . 1 (%) % grid boxes . 5 (%) % grid boxes . 10 (%)

Algorithm Ocean Land Coast Ocean Land Coast Ocean Land Coast Ocean Land Coast

Stage IV (V6) 52.8 48.7 48.8 26.4 22.8 22.7 7.8 6.3 7.5 2.7 2.0 3.0

PR V6 44.6 37.6 38.2 23.0 18.6 19.2 7.0 4.8 5.6 2.7 1.1 1.9

TMI V6 44.1 30.4 27.3 25.2 24.1 20.0 8.6 3.4 4.7 2.5 0.8 1.0

Stage IV (V7) 53.5 48.5 49.8 26.9 22.1 23.6 8.0 6.3 7.5 2.8 2.0 2.8

PR V7 45.4 36.8 38.6 24.1 18.7 20.1 7.8 4.6 6.2 3.0 1.3 2.2

TMI V7 75.8 30.0 26.6 27.7 19.6 19.3 7.8 1.9 4.6 2.6 0.7 0.9
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mean rain rate from all of the individual rain rates in

1mmh21 bins. Compared with a traditional CDF plot,

the cumulative contribution is better distributed across

the full range of rain rates. The oceanic plot (Fig. 4a)

reveals that about 60% of the mean rain rate is derived

from grid boxes with rain rates below 10mmh21. The

TMI V7 ocean algorithm derives the most rainfall from

light rain rates, the rest of the ocean algorithms agree at

,5mmh21 rates and diverge in the 5–10mmh21 range.

Version 7 of the TMI is clearly improved relative to V6

at higher rain rates. However, TMI V7 is still not getting

enough contribution from .10mmh21 rain rates. This

plotting method does not pick up much difference be-

tween PR V6 and V7 over ocean, although both have

slightly less contribution to the mean than stage IV

starting around 5mmh21 and up. The numerical con-

tribution to mean rain rate in Fig. 5 shows the same data

as Fig. 4 but emphasizes the rain-rate ranges that con-

tribute the most to the mean. It is interesting that TMI

V6 has more contribution from 5–15mmh21 rain rates

than the PR, which is consistent with other studies of

TMIV6 over ocean in tropical cyclones (Cecil andWingo

2009; Zagrodnik and Jiang 2013). It appears likely that

TMI V6 is identifying the areas of moderate rain, but

assigning rain rates of 5–15mmh21 to a number of pixels

that should have rain rates of 15–30mmh21 or higher.

The cumulative contribution over land (Fig. 4b) has

a stage-IV curve that looks about the same as the oceanic

curve, but noticeably different PR and TMI distributions.

There is a major difference between the stage IV and

TMI at light rain rates. The TMI algorithms derive about

80% of their mean rain rates from,5mmh21 rain rates,

but the stage IV only finds about 50% of the mean rain

rate comes from the ,5mmh21 bins. The stage-IV esti-

mate suggests that about 10% of the mean should come

from rain rates above 20mmh21; however, both TMI

algorithms also get essentially zero contribution from the

heavy rain rates. The PR curves show some difference

over land, with PR V7 coming much closer to stage IV

above 5mmh21 and especially above 15mmh21. Figure

5 suggests that the TMI needs to have less contribution

from the 3–6mmh21 rain rates and more in the

7–20mmh21 range. The coastal plots are similar to the

land plots. The PR is closer to the stage-IV reference and

the most significant area of TMI underestimation is

higher than over land, in the 10–30mmh21 range.

FIG. 4. Cumulative contribution (%) to mean rain rate for TRMM algorithms compared with the stage-IV reference dataset, divided by

(a) ocean, (b) land, and (c) coast/mixed surface.

FIG. 5. Contribution to mean rain rate for TRMM algorithms compared with the stage-IV reference, divided by (a) ocean, (b) land, and

(c) coast/mixed surface. Data are divided into bins of 1mmh21.
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c. Probability distributions

The probability distributions look at the difference in

rain rates without considering the contribution to the

mean. In Fig. 6, the probability of exceedance function is

calculated for each algorithm. The probability of ex-

ceedance is the probability that the rain rate in a given

grid box (R) exceeds a certain threshold (r). A loga-

rithmic plot is used on the y axis because the relative

frequency of high rain rates is rare. Figure 6a shows that

only around 5% of oceanic grid boxes have rain rates

exceeding 10mmh21. The cumulative contribution (Fig.

4a) demonstrates that these .10mmh21 boxes account

for about 40% of the cumulative rainfall. Over ocean,

the TRMM algorithms find about the same number of

grid boxes as stage IV up to about 15mmh21. The im-

provement TMI V7 high rain rates over ocean is limited

to rain rates below 35mmh21. Both PRV6 and V7 have

a higher probability of rain rates exceeding 20mmh21

than the stage-IV dataset. The discrepancy at high rain

rates is reflected in the high PR conditional mean rain

rates in Table 1.

The TMI land algorithms have a lower probability

of exceedance than stage IV starting at rain rates of

5mmh21 and up. The large difference in the 5–10mmh21

range is emphasized in Fig. 5 because there are a large

number of grid boxes in this range. The TMI V6 distri-

bution is overall much closer to stage IV than TMI V7.

The PR V7 probability of exceedance curve almost ex-

actly matches stage IV above 20mmh21, while PR V6

has less moderate and heavy raining grid boxes. The

underestimation of rain over land in V6 has been noted

by the algorithm developers and appears to be mostly

corrected in V7. The 5–20mmh21 range still is showing

some underestimation, but it is improved relative to V6.

Figures 4–6 all demonstrate that version 7 of the PR is

easily the best-performing TRMM algorithm over land

at higher rain rates. Over coasts, the TMI significantly

underestimates both moderate and heavy rain rates

relative to stage IV. Above 20mmh21, the TMI prob-

ability of exceedance is nearly a full order of magnitude

too low. The PR coastal algorithm shows fewer grid

boxes than stage IV exceeding rain rates of 5–40mmh21.

Above 40mmh21, the PR, TMI, and stage IV all diverge,

although the sample size at these rain rates is too low to

have high confidence in that disagreement.

d. Quantile plots

The quantile plots of all individual grid points (Fig. 7)

help illustrate the conditional bias between the algo-

rithms. The correlation coefficients (r) are also included

to gauge the degree of disagreement. Wang et al. (2009)

used a single case study of Hurricane Katrina over land

to compare TMI V6 and stage IV and found a correla-

tion coefficient of 0.71 on a 0.258 grid. However, the

correlation between TMI V6 and TRMM GV at Mel-

bourne over a 5-yr period is only 0.51, which compares

favorably with r 5 0.47 for the 252 storms in this study.

The additional stage-IV raining area relative to the PR

(Table 2) results in the PR quantiles favoring stage IV at

light rain rates. The PR–stage-IV correlation coefficient

is actually lowest over ocean, seemingly a result of PR

overestimation at moderate rain rates that is apparent in

the probability distributions.

The TMI ocean algorithms have almost as high of a

correlation coefficient as the PR and there are no ma-

jor biases present. The improved agreement in the

.10mmh21 range in Fig. 7d relative to Fig. 7c repre-

sents a noticeable improvement in the V6 deficiency that

was mentioned earlier in Fig. 5. Over land, TMI V6 and

V7 show similar biases relative to stage IV. The quantiles

are biased toward stage IV at rain rates below 0.5mmh21

and rain rates from 5 to 15mmh21. Figures 7g and 7h

(TMI land) have correlation coefficients below 0.5. The

bias at higher rain rates is visibly less in V6 when com-

pared with V7. The TMI coastal algorithm follows the

same bias pattern as the TMI land algorithm.

FIG. 6. Probability of exceedance plots for TRMM algorithms compared with the stage-IV reference dataset, divided by (a) ocean, (b)

land, and (c) coast/mixed surface.
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e. Error decomposition

With several sources of error in the grid averaging, it is

important to quantify how much of the deviation be-

tween TRMM and stage IV can be attributed to random

versus systematic causes. The error decomposition

method described in section 3b is applied to the four

TRMM algorithms and the results are displayed in

Table 3. The PR always has much lower systematic

error than the TMI. Given the spatial and temporal grid

resizing in this study, a large amount of random error is

expected. The TMI is expected to have more random

error from the resizing than the PR because of the dis-

crepancy between the 1/78 grid size and the TMI field of

view (FOV). If more TMI pixels were added to get an

apparent TMI resolution closer to the TMI FOV, the

result would be more blending of light and moderate

rain rates, which would reduce the rain rate of some of

the highest TMI grid boxes. The light and moderate rain

rates could change in either direction, since both heavier

and lighter–zero pixels would be averaged in. In other

words, the systematic error at moderate to high rain

rates (Figs. 7g,h) is likely not caused by the grid resizing.

The high percentage of systematic errors in Table 3 is

reasonable, although a cautious observer may choose to

only consider the relative difference between theV6 and

V7 systematic errors.

In any case, it is somewhat surprising that the PR

ocean algorithms have a higher RMSE than the TMI

algorithms, although some of the difference can proba-

bly be attributed to uncertainties in stage IV. The TMI

V7 ocean algorithm has both a lower RMSE and 15%

less systematic error, representing a major improvement

over V6. The improvement above 15mmh21 (Figs. 6

and 7) is the source of the error reduction. About 12%

more systematic error still remains compared with PR

V7. The systematic error increases for all four algo-

rithms over land relative to ocean. The most striking

difference is in the TMI, as V7 has a higher RMSE than

V6 and over 10%more systematic error. There is relatively

FIG. 7. Scatterplots of stage-IV 1-h rainfall vs TRMMrain rate, divided by TRMMalgorithm. The plots are arranged by TRMMalgorithm

(columns) and land, ocean, and coast/mixed (rows).
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little difference between V6 and V7 over coasts, al-

though the PR systematic error is reduced in V7. The

TMI coastal algorithms have a highRMSE, but the large

percentage of systematic error suggests that it a bias

correction technique may be able to remove a sizable

portion of the error.

f. Bias

The bias calculations relative to the stage-IV refer-

ence are displayed graphically in Fig. 8. The biases are

calculated for each algorithm versus stage IV in-

dividually (only grid boxes with either the individual

TRMM algorithm or stage IV greater than zero) instead

of using the combined dataset. The bias sample sizes are

shown in Table 4. The hit bias, miss bias, and false bias

add up to themean bias. The biases for all algorithms are

lowest over ocean, with miss bias contributing the most

to the mean bias. The oceanic algorithms have a very

low hit bias, as rain detection (raining versus non-

raining) remains the primary area of uncertainty. All of

the land algorithms have a significant negative mean

bias, with TMI V7 clearly showing the greatest un-

derestimation. The negative bias in the PR and TMI

land algorithms comes from both successful detection

and missed detection. Recall that Figs. 4, 5, and 6 show

that the PR land underestimation is especially apparent

at moderate to high rain rates. Version 7 of the PR does

show some improvement over V6 in coastal regions,

with less underestimation in raining areas. The system-

atic error over coasts derives from underestimation from

both hits and misses. Finally, it is worth noting that false

detection contributes very little to the mean biases as

a whole.

The statistical percentages of hits, misses, and false

rain are conveyed in Table 4. Both algorithms equaling

zero does not count as a hit. The PR has a better hit

percentage than the TMI over ocean, with the greatest

difference over land and coast. Misses are clearly less

frequent over ocean than land, which is expected be-

cause the emission-based channels can be added to the

ocean algorithm. The TMI has more misses than the PR,

especially over coasts. The geographic distribution of

hits, misses, and false rain was also considered. Hits and

misses did not show any noteworthy geographic biases.

Maps of the false positives are displayed in Fig. 9, nor-

malized for sample size relative to the sample in Fig. 3.

Precipitation radar false positives are relatively rare and

just above evenly distributed everywhere. In the PR

plots (Figs. 9a,b), there is some evidence of false posi-

tives caused by the 230-km radar range west of Tampa

Bay, but overall the radar range problem does not ap-

pear to be significantly affecting the dataset. Version 6 of

the TMI has a slightly elevated number of false positives

over ocean relative to the PR.Most of the false positives

are generated from the TMI V7 algorithm over ocean.

The hit percentage is only marginally improved relative

toV6, but the number of false positivesmore than triples

to over 30%. The next section examines these false pos-

itives in more detail.

g. TMI V7 probability of rain over ocean

The TMI V7 false positives over ocean must be con-

sidered in tandem with the TMI probability of rain pa-

rameter. Figure 10 examines the pixel-level TMI rain

rates and rain probabilities for hits, misses, and false

rain as inferred from the gridded data. The criteria are

modified slightly from Figs. 8 and 9 to reduce the risk of

improper categorization. A hit is defined when all three

V7 ocean algorithms are nonzero, a miss is when TMIV7

is zero and both stage IV and PR V7 are nonzero. False

rain is when TMI V7 is greater than zero and both stage

IV and PR V7 are zero. The fourth category, all zero,

refers to when stage IV, PR, and TMI all agree that the

rain rate is zero. This procedure retains 83%of the 34 590

ocean grid boxes including 7136 false TMI V7 grid boxes.

Figure 10a shows the CDF of rain rates for the hit and

false cases. The leftmost bin contains the zero rain pixels

that result from averaging to the larger grid size. The false

TMI pixels are mostly 0.5mmh21 or less. The probability

of rain CDF is displayed in Fig. 10b. Only 5%of hits have

less than a 100% probability of rain. Misses account for

less than 0.5% of all grid boxes and likely result from

being in the same grid box as PR andMPE raining pixels.

Pixels that are zero in all three algorithms have the lowest

probability of rain, generally less than 50%.

The false rain curve has several important character-

istics. About one-third of false rain pixels have a 100%

probability of rain, while the remaining two thirds are

nearly equally spread between 30%–95% probability.

Filtering the false TMI V7 pixels with a probability of

rain below 50% does little to affect the dataset, espe-

cially since most of the ,50% false TMI V7 pixels are

simply the zero rain pixels that are included from grid

averaging. Setting the filter at 90% removes 64%of false

pixels while only losing 4% of hits. However, it is difficult

TABLE 3. Root-mean-square error (RSME; mm h21) and the

percent of the RMSE that can be attributed to systematic biases.

Ocean Land Coast

Algorithm RMSE

%

system RMSE

%

system RMSE

%

system

PR V6 3.85 13.8 2.75 35.2 3.44 30.7

PR V7 3.85 10.6 2.80 27.0 3.40 22.2

TMI V6 3.60 38.8 3.39 49.5 3.90 62.2

TMI V7 3.31 23.2 3.53 61.4 3.83 61.0
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to determine which filtering criteria are closest to being

physically correct. The PR minimum sensitivity is

around 0.2–0.4mmh21 (Schumacher and Houze 2000)

and beam overshoot likely limits stage-IV sensitivity

over ocean as well. The TMI pixels labeled as ‘‘false’’

with a 100% probability of rain have a mean rain rate of

only 0.44mmh21 and a median of 0.30mmh21. Con-

sidering these limitations, it is difficult to determine the

TABLE 4. Sample size of grid boxes where each individual TRMM algorithm or the stage-IV reference is nonzero and the percentage of

those grid boxes that are designated as hits, misses, or false rain.

No. grid points % Hit % Miss % False

Algorithm Ocean Land Coast Ocean Land Coast Ocean Land Coast Ocean Land Coast

PR V6 26 892 65 787 19 046 72.1 65.9 68.3 21.0 27.7 26.1 6.8 6.4 5.6

PR V7 19 883 66 192 24 906 72.1 65.5 69.0 21.0 28.6 26.3 6.9 5.9 4.7

TMI V6 27 793 65 176 18 878 65.4 53.5 48.5 24.8 41.0 46.8 9.9 5.5 4.8

TMI V7 26 935 65 419 24 901 66.1 54.0 46.2 2.6 41.2 49.1 31.3 4.8 4.7

FIG. 8. Bar plots of mean (left to right) bias, hit bias, miss bias, and false bias, divided by (a) ocean, (b) land, and

(c) coast/mixed surface.
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best criteria without additional validation data. There is

no clear probability of rain cutoff and no way to distin-

guish whether TMI V7 ocean pixels with rain rates ,
0.5mmh21 are actually false or are just being missed by

the PR.

h. Bias relative to 85-GHz ice scattering

Wang et al. (2009) described several known anomalies

in the TMI V6 land algorithm, including overestimation

in strong, deep convective systems and an underesti-

mation of warm rainfall. A simple way to evaluate these

biases using the stage-IV reference is to compare the

rain rates relative to the minimum 85-GHz PCT. The

threshold for deep convection is generally defined as

a system with a minimum 85-GHz PCT , 225K (Mohr

and Zipser 1996). It is difficult to isolate areas of warm

rain using only PCT, but generally warm rain will have

an 85-GHz PCT around or above 275K. By using a grid

scale, this study also neglects characteristics of the

precipitating systems as a whole that can be better un-

derstood using precipitation features (e.g., Mohr and

Zipser 1996; Nesbitt et al. 2000; Cecil et al. 2002). Nev-

ertheless, a brief comparison is undertaken to evaluate

the TMI–PR relationship as it relates to the 85-GHz ice

scattering–rain rate relationship.

Figure 11 displays the mean gridbox rain rate as

a function of the minimum 85-GHz PCT and Fig. 12

shows the mean bias. In Figs. 11a and 12a, the ocean

algorithms are in almost perfect agreement with stage

IV for 85-GHz PCTs above 250K. Below 250K, the al-

gorithms have greater disagreements. In the 220–250-K

realm, all of the algorithms overestimate stage IV. At

lower 85-GHz PCTs, TMI-IV underestimates rain rates

and the other three algorithms overestimate. However,

the biases are all within about 2mmh21, which is a rea-

sonably acceptable range when considering the high rain

rates. Of greater interest is the land algorithm in Figs. 11b

and 12b. The TMI overestimation is a strong function of

FIG. 9. Geographic distribution of the percent of grid boxes by location with false positives (TRMM. 0, stage IV5 0), divided by (a) PR

V6, (b) PR V7, (c) TMI V6, and (d) TMI V7.
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minimum 85-GHz PCT. Overestimation is significant

at PCTs of 220K and below, which confirms the re-

sult in Wang et al. (2009), at least for this regime over

the southastern United States. The issue persists in

TMI V7, as little to no improvement is observed at low

85-GHz PCTs relative to TMI V6. To improve on the

deep convection issue, Gopalan et al. (2010) suggests

that additional rain predictors are needed to improve

the ice scattering signal and that the TMI–PR colloca-

tion method must consider viewing geometries more

carefully in convective rainfall.

The relative contribution of this TMI land over-

estimation to the rain-rate distributions in the rest of the

study is addressed in Fig. 13. Grid boxes with an 85-GHz

PCT less than 220K account for only about 4% (5%) of

the land (ocean) dataset. As a result, less than 20% of

the contribution to the mean rainfall comes from deep

convection. The overestimation by the TMI land algo-

rithms adds about a 10% contribution to the mean rain

rate relative to the PR and stage-IV datasets. The

greatest contribution to the mean is about linearly dis-

tributed between the 220- and 280-K range, which rep-

resents average rain rates around 1–10mmh21 from

Fig. 10. The bias distribution in Fig. 12 shows signs of the

negative warm bias over land, but this bias does not

appear to have a strong influence on the cumulative

rainfall contributions.

5. Discussion and conclusions

The two most recent versions of the PR 2A25 and

TMI 2A12 rainfall algorithms are compared relative

to the reference stage-IV radar–gauge precipitation

estimate dataset in landfalling tropical cyclones. The

statistical comparison reproduces the most common

deficiencies in TRMMversion 6 that have been noted by

several other studies. Matching the datasets spatially

and temporally does add random errors, but the large

FIG. 10. (a) CDF of pixel-level TMI V7 ocean rain rates from grid boxes defined as hits

(black) and false positives (gray). (b) CDF of pixel-level TMI V7 ocean probabilities of rain

from grid boxes defined as hits, misses, false rain, and all algorithms equal to zero.

FIG. 11. Distribution of mean rain rates as a function of theminimum 85-GHz PCT (K) in each grid box divided by (a) ocean, (b) land, and

(c) coast/mixed surface.
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sample of 252 storms is enough to remove biases related

to any individual storm. Even in heavy precipitating

systems like TCs, most of the rain rates are light and the

heavy rain is concentrated over a relatively small area.

Only around 2%–3% of the sample area has a rain rate

greater than 10mmh21, but that small area contributes

around 40% of the total rainfall. Identifying the location

and intensity of these areas of moderate to heavy rainfall

is especially important when forecasting flood threats in

landfalling TCs.

The PR V7 algorithm performs the best in all three

surface classifications. Over ocean, PR V7 is slightly

better than V6, as the hit bias is reduced by two-thirds

relative to stage IV. Over land, PR version 7 is again the

best-performing algorithm. The remaining PR V7 neg-

ative land bias can be mostly explained by underesti-

mation in the 5–20mmh21 rain-rate range. It appears

that changes to the PR attenuation correction in V7

have removed most of the negative bias at rain rates

above 20mmh21. The PR coastal algorithms both have

negative biases of comparable magnitudes to land, with

marginal improvement in V7. The PR also underesti-

mates stage IV at light rain rates, an effect of the instru-

ment’s inherent minimum reflectivity criteria.

The TMIV7 ocean algorithm is significantly improved

relative toV6 in the heavier rain-rate range,.15mmh21.

The TMIV7 land algorithm is the only instancewhereV7

has a significantly greater negative bias than V6. Both

TMI V6 and V7 land algorithms have much too great of

a contribution from light rain rates (,5mmh21) and too

small of a contribution from moderate rain rates .
5mmh21. Most of the additional negative bias in V7

comes from the 5–10mmh21 rain rates. The main lin-

gering issue with TMI V7 over ocean is the high number

of false positives, which must be filtered using the

probability of rain parameter. The false positives consist

mostly of pixel-level rain rates of 0.1–0.5mmh21 and

rain probabilities of 50%–100%. Setting a high proba-

bility of rain (90%–95%) removes about two-thirds of

the false positives while losing less than 5% of the hits.

With respect to ice scattering, themain area where the

TMI V7 land algorithm has significant overestimation

relative to PR and stage IV is when the minimum

85-GHz PCT is below 220K. These areas of deep con-

vection are too rare to show up in most of the statistical

analysis. One caveat is that the TRMM–stage-IV grid-

matching scheme may result in larger errors for these

isolated areas of deep convection than for dataset as

FIG. 12. As in Fig. 11, but for mean bias relative to stage IV.

FIG. 13. Cumulative contribution (%) to mean rain rate for TRMM algorithms compared with the minimum 85-GHz PCT divided by

(a) ocean, (b) land, and (c) coast/mixed surface.
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a whole. The mean PR and stage-IV rain rates of around

10mmh21 (in Fig. 10) for land grid boxes with a mini-

mum 85-GHz PCT , 200K seem too light. Gopalan

et al. (2010) noticed the same issue over several regions

including the southern United States. They suggested

several possible causes including attenuation and view-

ing angle discrepancies.Another hypothesis is that upper-

level winds may displace the ice scattering downshear

of the heaviest rain. Further investigation of the ice

scattering–rain rate relationship is required to better

understand this discrepancy.

Several lingering questions are raised from this study.

First, it is unclear whether the results can be translated

to tropical cyclones away from the coastline and in other

basins. Island areas may pose different challenges for

the coastal algorithm and no high mountainous terrain

was within this study’s viewing range. The amount of

error introduced by comparing instantaneous TRMM

overpasses with 1-h stage-IV averages can only be esti-

mated, which makes it hard to make definitive recom-

mendations when the satellite algorithms are close to

the reference data. In some instances, the PR appears to

be more accurate than stage IV based on visual ap-

proximation. Future studies should emphasize detecting

raining versus nonraining areas and consider rain gauges

as an additional reference dataset.
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